Thisbookisintendedformolecularbiologistswhoperformquantitativeanalysesondata
emanatingfromtheir?eldandforthestatisticianswhoworkwithmolecularbiologists
andotherbiomedicalresearchers.
Therearemanyexcellenttextbooksthatprovidefun-
mentalcomponentsforstatisticaltrainingcurricula.
Therearealsomany"byexpertsfor
experts"booksinstatisticsandmolecularbiologywhichrequirein-depthknowledgein
bothsubjectstobetakenfulladvantageof.
Sofar,nobookinstatisticshasbeenpublished
thatprovidesthebasicprinciplesofproperstatisticalanalysesandprogressestoamore
advancedstatisticsinresponsetorapidlydevelopingtechnologiesandmethodologiesin
the?eldofmolecularbiology.
Respondingtothissituation,ourbookaimsatbridgingthegapbetweenthesetwo
extremes.
Molecularbiologistswillbene?tfromtheprogressivestyleofthebookwhere
basicstatisticalmethodsareintroducedandgraduallyelevatedtoanintermediatelevel.
Similarly,statisticianswillbene?tfromlearningthevariousbiologicaldatageneratedfrom
the?eldofmolecularbiology,thetypesofquestionsofinteresttomolecularbiologists,
andthestatisticalapproachestoanalyzingthedata.
Thestatisticalconceptsandmethods
relevanttostudiesinmolecularbiologyarepresentedinasimpleandpracticalmanner.
Speci?cally,thebookcoversbasicandintermediatestatisticsthatareusefulforclassical
and molecular biology settings and advanced statistical techniques
that can be used to
helpsolveproblemscommonlyencounteredinmodernmolecularbiologystudies,such
assupervisedandunsupervisedlearning,hiddenMarkovmodels,manipulationandan-
ysisofdatafromhigh-throughputmicroarrayandproteomicplatform,andsynthesisof
these evidences. A tutorial-type format is used to maximize
learning in some chapters.
Advicefromjournaleditorsonpeer-reviewedpublicationandsomeusefulinformationon
softwareimplementationarealsoprovided.
Thisbookisrecommendedforuseassupplementarymaterialbothinsideandoutside
classroomsorasaself-learningguideforstudents,scientists,andresearcherswhodealwith
numericdatainmolecularbiologyandrelated?elds.
Thosewhostartasbeginners,but
desiretobeatanintermediatelevel,will?ndthisbookespeciallyusefulintheirlearning
pathway.
WewanttothankJohnWalker(serieseditor),PatrickMarton,DavidCasey,andAnne
Meagher,(editorsatSpringerandHumana)andShanthyJaganathan(Integra-India).
The
followingpersonsprovidedusefuladviceandcommentsonselectionoftopics,referralto
expertsineachtopic,and/orchapterreviewsthatwetrulyappreciate:StephenLooney(a
former editor of this book), Stan Young, Dmitri Zaykin, Douglas
Hawkins, Wei Pan, Alexandre Almeida, John Ho, Rebecca Doerge, Paula
Trushin, Kevin Morgan, Jason
Osborne,PeterWestfall,JennyXiang,Ya-linChiu,YolandaBarron,HuiboShao,Alvin
Mushlin,andRonaldFanta. Drs.
Bang,Zhou,andMazumdarwerepartiallysupported
byClinicalTranslationalScienceCenter(CTSC)grant(UL1-RR024996).
HeejungBang vii Contents Preface...vii Contributors...xi
PARTIBASICSTATISTICS...1 1.
ExperimentalStatisticsforBiologicalSciences...3
HeejungBangandMarieDavidian 2.
NonparametricMethodsforMolecularBiology...105 KnutM.
WittkowskiandTingtingSong 3. BasicsofBayesianMethods...155 SujitK.
Ghosh 4. TheBayesiant-TestandBeyond ...179 MithatGonen PARTII
DESIGNSANDMETHODSFORMOLECULARBIOLOGY...201 5.
SampleSizeandPowerCalculationforMolecularBiologyStudies...203
Sin-HoJung 6.
DesignsforLinkageAnalysisandAssociationStudiesofComplexDiseases...219
YuehuaCui,GengxinLi,ShaoyuLi,andRonglingWu 7.
IntroductiontoEpigenomicsandEpigenome-WideAnalysis...243 MelissaJ.
FazzariandJohnM. Greally 8.
Exploration,Visualization,andPreprocessingofHigh-DimensionalData...267
ZhijinWuandZhiqiangWu PARTIII STATISTICALMETHODSFORMICROARRAYDATA
...285 9.
IntroductiontotheStatisticalAnalysisofTwo-ColorMicroarrayData...287
MartinaBremer,EdwardHimelblau,andAndreasMadlung 10.
BuildingNetworkswithMicroarrayData...315 BradleyM.
Broom,WareeRinsurongkawong,LajosPusztai, andKim-AnhDo PARTIV
ADVANCEDORSPECIALIZEDMETHODSFORMOLECULARBIOLOGY. . 345 11.
SupportVectorMachinesforClassi?cation:AStatisticalPortrait...347
YoonkyungLee 12. AnOverviewofClusteringAppliedtoMolecularBiology
...369 RebeccaNugentandMarinaMeila ix xContents 13.
HiddenMarkovModelandItsApplicationsinMotifFindings...405
JingWuandJunXie 14. DimensionReductionforHigh-DimensionalData...417
LexinLi 15.
IntroductiontotheDevelopmentandValidationofPredictiveBiomarker
ModelsfromHigh-ThroughputDataSets ...435 XutaoDengandFabienCampagne
16. Multi-geneExpression-basedStatisticalApproachestoPredicting
Patients'ClinicalOutcomesandResponses...471
FengCheng,Sang-HoonCho,andJaeK. Lee 17.
Two-StageTestingStrategiesforGenome-WideAssociationStudies
inFamily-BasedDesigns ...485 AmyMurphy,ScottT.
Weiss,andChristophLange 18. StatisticalMethodsforProteomics ...497
KlausJung PARTVMETA-ANALYSISFORHIGH-DIMENSIONALDATA ...509 19.
StatisticalMethodsforIntegratingMultipleTypesofHigh-ThroughputData.
. 511 YangXieandChulAhn 20.
ABayesianHierarchicalModelforHigh-DimensionalMeta-analysis...531
FeiLiu 21.
MethodsforCombiningMultipleGenome-WideLinkageStudies...541 TreciaA.
KippolaandStephanieA. Santorico PARTVI OTHERPRACTICALINFORMATION
...561 22.
ImprovedReportingofStatisticalDesignandAnalysis:Guidelines,
Education,andEditorialPolicies...5 63
MadhuMazumdar,SampritBanerjee,andHeatherL. VanEpps 23.
StataCompanion...599 JenniferSousaBrennan SubjectIndex...627
Contributors CHULAHN* Division of Biostatistics, Department of
Clinical Sciences, The Harold C.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!