Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The book covers the latest developments in biologically-inspired and derived nanomedicine for cancer therapy. The purpose of the book is to illustrate the significance of naturally-mimicking systems for enhancing the dose delivered to the tumor, to improve stability, and prolong the circulation time. Moreover, readers are presented with advanced materials such as adjuvants for immunostimulation in cancer vaccines. The book also provides a comprehensive overview of the current status of academic research. This is an ideal book for students, researchers, and professors working in nanotechnology, cancer, targeted drug delivery, controlled drug release, materials science, and biomaterials as well as companies developing cancer immunotherapy.
Porous Silicon for Biomedical Applications, Second Edition, provides an updated guide to the diverse range of biomedical applications of porous silicon, from biosensing and imaging to tissue engineering and cancer therapy. Across biomedical disciplines, there is an ongoing search for biomaterials that are biocompatible, modifiable, structurally sound, and versatile. Porous silicon possesses a range of properties that make it ideal for a variety of biomedical applications, such as controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry. This book provides a fully updated and detailed overview of the range of biomedical applications for porous silicon. Part One offers the reader a helpful insight into the fundamentals and beneficial properties of porous silicon, including thermal properties and stabilization, photochemical and nonthermal chemical modification, protein modification, and biocompatibility. The book then builds on the systematic detailing of each biomedical application using porous silicon, from bioimaging and sensing to drug delivery and tissue engineering. This new edition also includes new chapters on in-vivo assessment of porous silicon, photodynamic and photothermal therapy, micro- and nanoneedles, Raman imaging, cancer immunotherapy, and more. With its acclaimed editor and international team of expert contributors, Porous Silicon for Biomedical Applications, Second Edition, is a technical resource and indispensable guide for all those involved in the research, development, and application of porous silicon and other biomaterials, while providing a comprehensive introduction for students and academics interested in this field.
Nanotechnology for Oral Drug Delivery: From Concept to Applications discusses the current challenges of oral drug delivery, broadly revising the different physicochemical barriers faced by nanotechnolgy-based oral drug delivery systems, and highlighting the challenges of improving intestinal permeability and drug absorption. Oral delivery is the most widely used form of drug administration due to ease of ingestion, cost effectiveness, and versatility, by allowing for the accommodation of different types of drugs, having the highest patient compliance. In this book, a comprehensive overview of the most promising and up-to-date engineered and surface functionalized drug carrier systems, as well as opportunities for the development of novel and robust delivery platforms for oral drug administration are discussed. The relevance of controlling the physicochemical properties of the developed particle formulations, from size and shape to drug release profile are broadly reviewed. Advances in both in vitro and in vivo scenarios are discussed, focusing on the possibilities to study the biological-material interface. The industrial perspective on the production of nanotechnology-based oral drug delivery systems is also covered. Nanotechnology for Oral Drug Delivery: From Concept to Applications is essential reading for researchers, professors, advanced students and industry professionals working in the development, manufacturing and/or commercialization of nanotechnology-based systems for oral drug delivery, targeted drug delivery, controlled drug release, materials science and biomaterials, in vitro and in vivo testing of potential oral drug delivery technologies.
Lignin-based Materials for Biomedical Applications: Preparation, Characterization, and Implementation explores the emerging area of lignin-based materials as a platform for advanced biomedical applications, guiding the reader from source through to implementation. The first part of the book introduces the basics of lignin, including extraction methods, chemical modifications, structure and composition, and properties that make lignin suitable for biomedical applications. In addition, structural characterization techniques are described in detail. The next chapters focus on the preparation of lignin-based materials for biomedical applications, presenting methodologies for lignin-based nanoparticles, hydrogels, aerogels, and nanofibers, and providing in-depth coverage of lignin-based materials with specific properties-including antioxidant properties, UV absorbing capability, antimicrobial properties, and colloidal particles with tailored properties-and applications, such as drug and gene delivery, and tissue engineering. Finally, future perspectives and possible new applications are considered. This is an essential reference for all those with an interest in lignin-based materials and their biomedical applications, including researchers and advanced students across bio-based polymers, polymer science, polymer chemistry, biomaterials, nanotechnology, materials science and engineering, drug delivery, and biomedical engineering, as well as industrial R&D and scientists involved with bio-based polymers, specifically for biomedical applications.
Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery is a concept-orientated reference that features case studies on utilizing microfluidics for drug delivery applications. It is a valuable learning reference on microfluidics for drug delivery applications and assists practitioners developing novel drug delivery platforms using microfluidics. It explores advances in microfluidics for drug delivery applications from different perspectives, covering device fabrication, fluid dynamics, cutting-edge microfluidic technology in the global drug delivery industry, lab-on-chip nano/micro fabrication and drug encapsulation, cell encapsulation and delivery, and cell- drug interaction screening. These microfluidic platforms have revolutionized the drug delivery field, but also show great potential for industrial applications.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|