Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
In 1998-99, at the dawn of the SoC Revolution, we wrote Surviving the SOC Revolution: A Guide to Platform Based Design. In that book, we focused on presenting guidelines and best practices to aid engineers beginning to design complex System-on-Chip devices (SoCs). Now, in 2003, facing the mid-point of that revolution, we believe that it is time to focus on winning. In this book, Winning the SoC Revolution: Experiences in Real Design, we gather the best practical experiences in how to design SoCs from the most advanced design groups, while setting the issues and techniques in the context of SoC design methodologies. As an edited volume, this book has contributions from the leading design houses who are winning in SoCs - Altera, ARM, IBM, Philips, TI, UC Berkeley, and Xilinx. These chapters present the many facets of SoC design - the platform based approach, how to best utilize IP, Verification, FPGA fabrics as an alternative to ASICs, and next generation process technology issues. We also include observations from Ron Wilson of CMP Media on best practices for SoC design team collaboration. We hope that by utilizing this book, you too, will win the SoC Revolution.
Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) proving' the methodology by undertaking industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.
From the reviews: "This book crystallizes what may become a defining moment in the electronics industry - the shift to platform-based design. It provides the first comprehensive guidebook for those who will build, and use, the integration platforms that may soon drive the system-on-chip revolution." Electronic Engineering Times
From the reviews: "This book crystallizes what may become a defining moment in the electronics industry - the shift to platform-based design. It provides the first comprehensive guidebook for those who will build, and use, the integration platforms that may soon drive the system-on-chip revolution." Electronic Engineering Times
Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.
In 1998-99, at the dawn of the SoC Revolution, we wrote Surviving the SOC Revolution: A Guide to Platform Based Design. In that book, we focused on presenting guidelines and best practices to aid engineers beginning to design complex System-on-Chip devices (SoCs). Now, in 2003, facing the mid-point of that revolution, we believe that it is time to focus on winning. In this book, Winning the SoC Revolution: Experiences in Real Design, we gather the best practical experiences in how to design SoCs from the most advanced design groups, while setting the issues and techniques in the context of SoC design methodologies. As an edited volume, this book has contributions from the leading design houses who are winning in SoCs - Altera, ARM, IBM, Philips, TI, UC Berkeley, and Xilinx. These chapters present the many facets of SoC design - the platform based approach, how to best utilize IP, Verification, FPGA fabrics as an alternative to ASICs, and next generation process technology issues. We also include observations from Ron Wilson of CMP Media on best practices for SoC design team collaboration. We hope that by utilizing this book, you too, will win the SoC Revolution.
|
You may like...
|