0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Responsible Graph Neural Networks (Paperback): Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash Responsible Graph Neural Networks (Paperback)
Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash
R1,305 Discovery Miles 13 050 Ships in 12 - 17 working days

More frequent and complex cyber threats require robust, automated and rapid responses from cyber security specialists. This book offers a complete study in the area of graph learning in cyber, emphasising graph neural networks (GNNs) and their cyber security applications. Three parts examine the basics; methods and practices; and advanced topics. The first part presents a grounding in graph data structures and graph embedding and gives a taxonomic view of GNNs and cyber security applications. Part two explains three different categories of graph learning including deterministic, generative and reinforcement learning and how they can be used for developing cyber defence models. The discussion of each category covers the applicability of simple and complex graphs, scalability, representative algorithms and technical details. Undergraduate students, graduate students, researchers, cyber analysts, and AI engineers looking to understand practical deep learning methods will find this book an invaluable resource.

Responsible Graph Neural Networks (Hardcover): Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash Responsible Graph Neural Networks (Hardcover)
Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash
R2,201 Discovery Miles 22 010 Ships in 12 - 17 working days

More frequent and complex cyber threats require robust, automated and rapid responses from cyber security specialists. This book offers a complete study in the area of graph learning in cyber, emphasising graph neural networks (GNNs) and their cyber security applications. Three parts examine the basics; methods and practices; and advanced topics. The first part presents a grounding in graph data structures and graph embedding and gives a taxonomic view of GNNs and cyber security applications. Part two explains three different categories of graph learning including deterministic, generative and reinforcement learning and how they can be used for developing cyber defence models. The discussion of each category covers the applicability of simple and complex graphs, scalability, representative algorithms and technical details. Undergraduate students, graduate students, researchers, cyber analysts, and AI engineers looking to understand practical deep learning methods will find this book an invaluable resource.

Deep Learning Techniques for IoT Security and Privacy (Hardcover, 1st ed. 2022): Mohamed Abdel-Basset, Nour Moustafa, Hossam... Deep Learning Techniques for IoT Security and Privacy (Hardcover, 1st ed. 2022)
Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding
R4,267 Discovery Miles 42 670 Ships in 12 - 17 working days

This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.

Deep Learning Techniques for IoT Security and Privacy (Paperback, 1st ed. 2022): Mohamed Abdel-Basset, Nour Moustafa, Hossam... Deep Learning Techniques for IoT Security and Privacy (Paperback, 1st ed. 2022)
Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding
R4,464 Discovery Miles 44 640 Ships in 10 - 15 working days

This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
LG 20MK400H 19.5" Monitor WXGA LED Black
R2,199 R1,699 Discovery Miles 16 990
Mountain Backgammon - The Classic Game…
Lily Dyu R575 R460 Discovery Miles 4 600
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn Paperback  (5)
R199 R145 Discovery Miles 1 450
Atmosfire
Jan Braai Hardcover R590 R425 Discovery Miles 4 250
Dala Craft Pom Poms - Assorted Colours…
R34 Discovery Miles 340
Endless Summer Vacation
Miley Cyrus CD R246 R207 Discovery Miles 2 070
Nintendo Labo Customisation Set for…
R246 R114 Discovery Miles 1 140
Daily Power Battery Tester (For…
R147 Discovery Miles 1 470
Percy Jackson And The Olympians - 5-Book…
Rick Riordan Paperback R622 Discovery Miles 6 220
Home Classix Trusty Traveller Mug…
R99 R81 Discovery Miles 810

 

Partners