Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 28 matches in All Departments
Apples are one of the most highly consumed fruits globally, with estimations that almost 88 million tonnes of apples are produced worldwide each year. As a result of this popularity, consumers have extremely high expectations of the sensory quality of the apples they consume. Improving the quality of apples provides a comprehensive review of the wealth of research on the processes which determine the key quality attributes of apples, including texture, flavour and nutritional content. The book addresses how these properties can be enhanced during the pre- and postharvest stages to ensure product quality and customer satisfaction, as well as the role of breeding programmes in identifying genes directly related to sensory quality characteristics. In its detailed exploration of the key quality attributes of apples, the book provides its readers with an insight into the science behind producing the 'perfect' product and how influential quality attributes are on consumer purchasing behaviours.
Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance.
This book constitutes the refereed proceedings at PAKDD Workshops 2014, held in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Tainan, Taiwan, in May 2014. The 73 revised papers presented were carefully reviewed and selected from 179 submissions. The workshops affiliated with PAKDD 2014 include: Data Analytics for Targeted Healthcare, DANTH; Data Mining and Decision Analytics for Public Health and Wellness, DMDA-Health; Biologically Inspired Data Mining Techniques, BDM; Mobile Data Management, Mining, and Computing on Social Networks, MobiSocial; Big Data Science and Engineering on E-Commerce, BigEC; Cloud Service Discovery, CloudSD; Mobile Sensing, Mining and Visualization for Human Behavior Inferences, MSMV-HBI; Scalable Dats Analytics: Theory and Algorithms, SDA; Algorithms for Large-Scale Information Processing in Knowledge Discovery, ALSIP; Data Mining in Social Networks, SocNet; Data Mining in Biomedical Informatics and Healthcare, DMBIH; and Pattern Mining and Application of Big Data, BigPMA.
The two-volume set LNAI 8443 + LNAI 8444 constitutes the refereed proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014, held in Tainan, Taiwan, in May 2014. The 40 full papers and the 60 short papers presented within these proceedings were carefully reviewed and selected from 371 submissions. They cover the general fields of pattern mining; social network and social media; classification; graph and network mining; applications; privacy preserving; recommendation; feature selection and reduction; machine learning; temporal and spatial data; novel algorithms; clustering; biomedical data mining; stream mining; outlier and anomaly detection; multi-sources mining; and unstructured data and text mining.
The two-volume set LNAI 8443 + LNAI 8444 constitutes the refereed proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014, held in Tainan, Taiwan, in May 2014. The 40 full papers and the 60 short papers presented within these proceedings were carefully reviewed and selected from 371 submissions. They cover the general fields of pattern mining; social network and social media; classification; graph and network mining; applications; privacy preserving; recommendation; feature selection and reduction; machine learning; temporal and spatial data; novel algorithms; clustering; biomedical data mining; stream mining; outlier and anomaly detection; multi-sources mining; and unstructured data and text mining.
This book constitutes the proceedings of the 14th Pacific-Rim Conference on Multimedia, PCM 2013, held in Nanjing, China, in December 2013. The 30 revised full papers and 27 poster papers presented were carefully reviewed and selected from 153 submissions. The papers cover a wide range of topics in the area of multimedia content analysis, multimedia signal processing and communications and multimedia applications and services.
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Intelligence Science andBig Data Engineering, IScIDE 2013, held in Beijing, China, in July/August 2013. The 111 papers presented were carefully peer-reviewed and selected from 390 submissions. Topics covered include information theoretic and Bayesian approaches; probabilistic graphical models; pattern recognition and computer vision; signal processing and image processing; machine learning and computational intelligence; neural networks and neuro-informatics; statistical inference and uncertainty reasoning; bioinformatics and computational biology and speech recognition and natural language processing."
This book constitutes the thoroughly refereed revised selected papers from the Second IAPR International Workshop, PSL 2013, held in Nanjing, China, in May 2013. The 10 papers included in this volume were carefully reviewed and selected from 26 submissions. Partially supervised learning is a rapidly evolving area of machine learning. It generalizes many kinds of learning paradigms including supervised and unsupervised learning, semi-supervised learning for classification and regression, transductive learning, semi-supervised clustering, multi-instance learning, weak label learning, policy learning in partially observable environments, etc.
This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The 34 revised papers presented together with two invited papers were carefully reviewed and selected from 59 submissions. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.
This book constitutes the proceedings of the Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, IScIDE 2011, held in Xi'an, China, in October 2011. The 97 papers presented were carefully peer-reviewed and selected from 389 submissions. The IScIDE papers in this volume are organized in topical sections on machine learning and computational intelligence; pattern recognition; computer vision and image processing; graphics and computer visualization; knowledge discovering, data mining, web mining; multimedia processing and application.
An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.
The First Asian Conference on Machine Learning (ACML 2009) was held at Nanjing, China during November 2-4, 2009.This was the ?rst edition of a series of annual conferences which aim to provide a leading international forum for researchers in machine learning and related ?elds to share their new ideas and research ?ndings. This year we received 113 submissions from 18 countries and regions in Asia, Australasia, Europe and North America. The submissions went through a r- orous double-blind reviewing process. Most submissions received four reviews, a few submissions received ?ve reviews, while only several submissions received three reviews. Each submission was handled by an Area Chair who coordinated discussions among reviewers and made recommendation on the submission. The Program Committee Chairs examined the reviews and meta-reviews to further guarantee the reliability and integrity of the reviewing process. Twenty-nine - pers were selected after this process. To ensure that important revisions required by reviewers were incorporated into the ?nal accepted papers, and to allow submissions which would have - tential after a careful revision, this year we launched a "revision double-check" process. In short, the above-mentioned 29 papers were conditionally accepted, and the authors were requested to incorporate the "important-and-must"re- sionssummarizedbyareachairsbasedonreviewers'comments.Therevised?nal version and the revision list of each conditionally accepted paper was examined by the Area Chair and Program Committee Chairs. Papers that failed to pass the examination were ?nally rejected.
The Pacific Rim International Conference on Artificial Intelligence (PRICAI) is one of the preeminent international conferences on artificial intelligence (AI). PRICAI 2008 (http://www.jaist.ac.jp/PRICAI-08/) was the tenth in this series of biennial int- national conferences highlighting the most significant contributions to the field of AI. The conference was held during December 15-19, 2008, in the beautiful city Hanoi, the capital of Vietnam. As in previous years this year's technical program saw very high standards in both the submission and paper review process, resulting in an exciting program that reflects the great variety and depth of modern AI research. This year's contributions covered all traditional areas of AI, including AI foundations, knowledge representation, knowledge acquisition and ontologies, evolutionary computation, etc., as well as va- ous exciting and innovative applications of AI to many different areas. There was particular emphasis in the areas of machine learning and data mining, intelligent agents, language and speech processing, information retrieval and extraction.
This book constitutes the thoroughly refereed post-proceedings of three workshops and an industrial track held in conjunction with the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China in May 2007. The 62 revised full papers presented together with an overview
article to each workshop were carefully reviewed and selected from
355 submissions. The volume contains papers of the PAKDD 2007
industrial track, that promotes industry applications of new data
mining techniques, methodologies and systems, the workshop on Data
Mining for Biomedical Applications (BioDM 2007), the workshop on
High Performance Data Mining and Applications (HPDMA 2007), as well
as the workshop on on Service, Security and its Data management for
Ubiquitous Computing (SSDU 2007).
This book constitutes the refereed proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China, May 2007. It covers new ideas, original research results and practical development experiences from all KDD-related areas including data mining, machine learning, data warehousing, data visualization, automatic scientific discovery, knowledge acquisition and knowledge-based systems.
In this issue of Physical Medicine and Rehabilitation Clinics, guest editors Drs. Xiaohua Zhou and Cassandra Renfro bring their considerable expertise to the topic of Wound and Skin Care. Top experts in the field cover key topics such as non-operative and operative management of diabetic foot ulceration; advanced burn management; emerging technology in the wound management field; establishment of a comprehensive wound care team; wound care and nutrition; and more. Contains 13 relevant, practice-oriented topics including general skin issues in the adult rehab setting; comprehensive management of pressure injury; seating assessment for the wheelchair population; therapeutic techniques when treating the lymphedema patient; general skin issues in the pediatric population; and more. Provides in-depth clinical reviews on wound and skin care, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.
Machine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas of computer science research. This textbook offers a comprehensive and unbiased introduction to almost all aspects of machine learning, from the fundamentals to advanced topics. It consists of 16 chapters divided into three parts: Part 1 (Chapters 1-3) introduces the fundamentals of machine learning, including terminology, basic principles, evaluation, and linear models; Part 2 (Chapters 4-10) presents classic and commonly used machine learning methods, such as decision trees, neural networks, support vector machines, Bayesian classifiers, ensemble methods, clustering, dimension reduction and metric learning; Part 3 (Chapters 11-16) introduces some advanced topics, covering feature selection and sparse learning, computational learning theory, semi-supervised learning, probabilistic graphical models, rule learning, and reinforcement learning. Each chapter includes exercises and further reading, so that readers can explore areas of interest. The book can be used as an undergraduate or postgraduate textbook for computer science, computer engineering, electrical engineering, data science, and related majors. It is also a useful reference resource for researchers and practitioners of machine learning.
This book constitutes the refereed proceedings of the First CCF International Conference on Artificial Intelligence, CCF-ICAI 2018, held in Jinan, China in August, 2018. The 17 papers presented were carefully reviewed and selected from 82 submissions. The papers are organized in topical sections on unsupervised learning, graph-based and semi-supervised learning, neural networks and deep learning, planning and optimization, AI applications.
This book constitutes the refereed proceedings at PAKDD Workshops 2015, held in conjunction with PAKDD, the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Ho Chi Minh City, Vietnam, in May 2015. The 23 revised papers presented were carefully reviewed and selected from 57 submissions. The workshops affiliated with PAKDD 2015 include: Pattern Mining and Application of Big Data (BigPMA), Quality Issues, Measures of Interestingness and Evaluation of data mining models (QIMIE), Data Analytics for Evidence-based Healthcare (DAEBH), Vietnamese Language and Speech Processing (VLSP).
This two-volume set, LNAI 9077 + 9078, constitutes the refereed proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2015, held in Ho Chi Minh City, Vietnam, in May 2015. The proceedings contain 117 paper carefully reviewed and selected from 405 submissions. They have been organized in topical sections named: social networks and social media; classification; machine learning; applications; novel methods and algorithms; opinion mining and sentiment analysis; clustering; outlier and anomaly detection; mining uncertain and imprecise data; mining temporal and spatial data; feature extraction and selection; mining heterogeneous, high-dimensional, and sequential data; entity resolution and topic-modeling; itemset and high-performance data mining; and recommendations.
This two-volume set, LNAI 9077 + 9078, constitutes the refereed proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2015, held in Ho Chi Minh City, Vietnam, in May 2015. The proceedings contain 117 paper carefully reviewed and selected from 405 submissions. They have been organized in topical sections named: social networks and social media; classification; machine learning; applications; novel methods and algorithms; opinion mining and sentiment analysis; clustering; outlier and anomaly detection; mining uncertain and imprecise data; mining temporal and spatial data; feature extraction and selection; mining heterogeneous, high-dimensional and sequential data; entity resolution and topic-modeling; itemset and high-performance data mining; and recommendations.
The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019. The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and feature selection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining.
The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019. The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and featureselection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining.
The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019. The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and featureselection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining. |
You may like...
|