0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Evolutionary Data Clustering: Algorithms and Applications (Hardcover, 1st ed. 2021): Ibrahim Aljarah, Hossam Faris, Seyed Ali... Evolutionary Data Clustering: Algorithms and Applications (Hardcover, 1st ed. 2021)
Ibrahim Aljarah, Hossam Faris, Seyed Ali Mirjalili
R4,710 Discovery Miles 47 100 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Evolutionary Machine Learning Techniques - Algorithms and Applications (Hardcover, 1st ed. 2020): Seyed Ali Mirjalili, Hossam... Evolutionary Machine Learning Techniques - Algorithms and Applications (Hardcover, 1st ed. 2020)
Seyed Ali Mirjalili, Hossam Faris, Ibrahim Aljarah
R4,719 Discovery Miles 47 190 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Evolutionary Data Clustering: Algorithms and Applications (Paperback, 1st ed. 2021): Ibrahim Aljarah, Hossam Faris, Seyed Ali... Evolutionary Data Clustering: Algorithms and Applications (Paperback, 1st ed. 2021)
Ibrahim Aljarah, Hossam Faris, Seyed Ali Mirjalili
R4,681 Discovery Miles 46 810 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Evolutionary Machine Learning Techniques - Algorithms and Applications (Paperback, 1st ed. 2020): Seyed Ali Mirjalili, Hossam... Evolutionary Machine Learning Techniques - Algorithms and Applications (Paperback, 1st ed. 2020)
Seyed Ali Mirjalili, Hossam Faris, Ibrahim Aljarah
R4,691 Discovery Miles 46 910 Ships in 18 - 22 working days

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Albert Einstein, Volume 72
Maria Isabel Sanchez Vegara Hardcover R248 Discovery Miles 2 480
Particle Mechanics
Chris Collinson, Tom Roper Paperback R824 Discovery Miles 8 240
The Collective Memory Reader
Jeffrey K Olick, Vered Vinitzky-Seroussi, … Hardcover R4,150 Discovery Miles 41 500
Complex Models and Computational Methods…
Matteo Grigoletto, Francesco Lisi, … Hardcover R3,053 R1,881 Discovery Miles 18 810
The Sources of Intentionality
Uriah Kriegel Hardcover R2,733 Discovery Miles 27 330
Recipe Keepsake Book From Mum - Create…
Petal Publishing Co Hardcover R547 Discovery Miles 5 470
An Agnostic Defends God - How Science…
Bryan Frances Hardcover R2,653 Discovery Miles 26 530
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, … Paperback R350 R317 Discovery Miles 3 170
Big Friendship - How We Keep Each Other…
Aminatou Sow, Ann Friedman Paperback R383 R357 Discovery Miles 3 570
Living While Black - The Essential Guide…
Guilaine Kinouani Paperback R485 R440 Discovery Miles 4 400

 

Partners