0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (1)
  • R5,000 - R10,000 (3)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Evolutionary Data Clustering: Algorithms and Applications (Hardcover, 1st ed. 2021): Ibrahim Aljarah, Hossam Faris, Seyed Ali... Evolutionary Data Clustering: Algorithms and Applications (Hardcover, 1st ed. 2021)
Ibrahim Aljarah, Hossam Faris, Seyed Ali Mirjalili
R5,106 Discovery Miles 51 060 Ships in 10 - 15 working days

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Evolutionary Machine Learning Techniques - Algorithms and Applications (Hardcover, 1st ed. 2020): Seyed Ali Mirjalili, Hossam... Evolutionary Machine Learning Techniques - Algorithms and Applications (Hardcover, 1st ed. 2020)
Seyed Ali Mirjalili, Hossam Faris, Ibrahim Aljarah
R5,117 Discovery Miles 51 170 Ships in 10 - 15 working days

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Evolutionary Data Clustering: Algorithms and Applications (Paperback, 1st ed. 2021): Ibrahim Aljarah, Hossam Faris, Seyed Ali... Evolutionary Data Clustering: Algorithms and Applications (Paperback, 1st ed. 2021)
Ibrahim Aljarah, Hossam Faris, Seyed Ali Mirjalili
R5,076 Discovery Miles 50 760 Ships in 10 - 15 working days

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Evolutionary Machine Learning Techniques - Algorithms and Applications (Paperback, 1st ed. 2020): Seyed Ali Mirjalili, Hossam... Evolutionary Machine Learning Techniques - Algorithms and Applications (Paperback, 1st ed. 2020)
Seyed Ali Mirjalili, Hossam Faris, Ibrahim Aljarah
R5,086 Discovery Miles 50 860 Ships in 10 - 15 working days

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Staedtler Noris Watercolour Paint Box…
R66 R54 Discovery Miles 540
Wonder Plant Food Stix - Premium Plant…
R55 R48 Discovery Miles 480
Shrek Forever After (Blu-Ray)
Mike Mitchell Blu-ray disc R74 Discovery Miles 740
Seagull Clear Storage Box (42lt)
R388 Discovery Miles 3 880
Silver Strings
Iain Anderson CD R516 Discovery Miles 5 160
The Garden Within - Where the War with…
Anita Phillips Paperback R329 R284 Discovery Miles 2 840
380GSM Golf Towel (30x50cm)(3 Piece)(Red…
R179 Discovery Miles 1 790
Ultimate Cookies & Cupcakes For Kids
Hinkler Pty Ltd Kit R299 R270 Discovery Miles 2 700
Marco Earbuds in Case [Black]
 (1)
R20 Discovery Miles 200
Cricut Joy Ultimate Permanent Fine Point…
R1,399 R513 Discovery Miles 5 130

 

Partners