0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (4)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Fundamental Problems of Mesoscopic Physics - Interactions and Decoherence (Hardcover, 2004 ed.): Igor V. Lerner, Boris L.... Fundamental Problems of Mesoscopic Physics - Interactions and Decoherence (Hardcover, 2004 ed.)
Igor V. Lerner, Boris L. Altshuler, Yuval Gefen
R8,288 Discovery Miles 82 880 Ships in 10 - 15 working days

Mesoscopic physics deals with effects at submicron and nanoscales where the conventional wisdom of macroscopic averaging is no longer applicable. A wide variety of new devices have recently evolved, all extremely promising for major novel directions in technology, including carbon nanotubes, ballistic quantum dots, hybrid mesoscopic junctions made of different type of normal, superconducting and ferromagnetic materials. This, in turn, demands a profound understanding of fundamental physical phenomena on mesoscopic scales. As a result, the forefront of fundamental research in condensed matter has been moved to the areas where the interplay between electron-electron interactions and quantum interference of phase-coherent electrons scattered by impurities and/or boundaries is the key to such understanding. An understanding of decoherence as well as other effects of the interactions is crucial for developing future electronic, photonic and spintronic devices, including the element base for quantum computation.

Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems (Hardcover, 2002 ed.): Igor V. Lerner, Boris L.... Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems (Hardcover, 2002 ed.)
Igor V. Lerner, Boris L. Althsuler, Vladimir I. Fal'ko, Thierry Giamarchi
R5,665 Discovery Miles 56 650 Ships in 10 - 15 working days

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena."

Supersymmetry and Trace Formulae - Chaos and Disorder (Hardcover, 1999 ed.): Igor V. Lerner, Jonathan P. Keating, David E.... Supersymmetry and Trace Formulae - Chaos and Disorder (Hardcover, 1999 ed.)
Igor V. Lerner, Jonathan P. Keating, David E. Khmelnitskii
R4,960 R4,499 Discovery Miles 44 990 Save R461 (9%) Ships in 12 - 17 working days

The motion of a particle in a random potential in two or more dimensions is chaotic, and the trajectories in deterministically chaotic systems are effectively random. It is therefore no surprise that there are links between the quantum properties of disordered systems and those of simple chaotic systems. The question is, how deep do the connec tions go? And to what extent do the mathematical techniques designed to understand one problem lead to new insights into the other? The canonical problem in the theory of disordered mesoscopic systems is that of a particle moving in a random array of scatterers. The aim is to calculate the statistical properties of, for example, the quantum energy levels, wavefunctions, and conductance fluctuations by averaging over different arrays; that is, by averaging over an ensemble of different realizations of the random potential. In some regimes, corresponding to energy scales that are large compared to the mean level spacing, this can be done using diagrammatic perturbation theory. In others, where the discreteness of the quantum spectrum becomes important, such an approach fails. A more powerful method, devel oped by Efetov, involves representing correlation functions in terms of a supersymmetric nonlinear sigma-model. This applies over a wider range of energy scales, covering both the perturbative and non-perturbative regimes. It was proved using this method that energy level correlations in disordered systems coincide with those of random matrix theory when the dimensionless conductance tends to infinity."

Supersymmetry and Trace Formulae - Chaos and Disorder (Paperback, Softcover reprint of the original 1st ed. 1999): Igor V.... Supersymmetry and Trace Formulae - Chaos and Disorder (Paperback, Softcover reprint of the original 1st ed. 1999)
Igor V. Lerner, Jonathan P. Keating, David E. Khmelnitskii
R4,295 Discovery Miles 42 950 Ships in 10 - 15 working days

The motion of a particle in a random potential in two or more dimensions is chaotic, and the trajectories in deterministically chaotic systems are effectively random. It is therefore no surprise that there are links between the quantum properties of disordered systems and those of simple chaotic systems. The question is, how deep do the connec tions go? And to what extent do the mathematical techniques designed to understand one problem lead to new insights into the other? The canonical problem in the theory of disordered mesoscopic systems is that of a particle moving in a random array of scatterers. The aim is to calculate the statistical properties of, for example, the quantum energy levels, wavefunctions, and conductance fluctuations by averaging over different arrays; that is, by averaging over an ensemble of different realizations of the random potential. In some regimes, corresponding to energy scales that are large compared to the mean level spacing, this can be done using diagrammatic perturbation theory. In others, where the discreteness of the quantum spectrum becomes important, such an approach fails. A more powerful method, devel oped by Efetov, involves representing correlation functions in terms of a supersymmetric nonlinear sigma-model. This applies over a wider range of energy scales, covering both the perturbative and non-perturbative regimes. It was proved using this method that energy level correlations in disordered systems coincide with those of random matrix theory when the dimensionless conductance tends to infinity.

Fundamental Problems of Mesoscopic Physics - Interactions and Decoherence (Paperback, Softcover reprint of the original 1st ed.... Fundamental Problems of Mesoscopic Physics - Interactions and Decoherence (Paperback, Softcover reprint of the original 1st ed. 2004)
Igor V. Lerner, Boris L. Altshuler, Yuval Gefen
R8,213 Discovery Miles 82 130 Ships in 10 - 15 working days

Mesoscopic physics deals with effects at submicron and nanoscales where the conventional wisdom of macroscopic averaging is no longer applicable. A wide variety of new devices have recently evolved, all extremely promising for major novel directions in technology, including carbon nanotubes, ballistic quantum dots, hybrid mesoscopic junctions made of different type of normal, superconducting and ferromagnetic materials. This, in turn, demands a profound understanding of fundamental physical phenomena on mesoscopic scales. As a result, the forefront of fundamental research in condensed matter has been moved to the areas where the interplay between electron-electron interactions and quantum interference of phase-coherent electrons scattered by impurities and/or boundaries is the key to such understanding. An understanding of decoherence as well as other effects of the interactions is crucial for developing future electronic, photonic and spintronic devices, including the element base for quantum computation.

Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems (Paperback, Softcover reprint of the original 1st... Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems (Paperback, Softcover reprint of the original 1st ed. 2002)
Igor V. Lerner, Boris L. Althsuler, Vladimir I. Fal'ko, Thierry Giamarchi
R5,588 Discovery Miles 55 880 Ships in 10 - 15 working days

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bloed, Dunner as Water - Suid-Afrika se…
Charne Kemp Paperback R340 R292 Discovery Miles 2 920
Hoe Ek Dit Onthou
Francois Van Coke, Annie Klopper Paperback R300 R219 Discovery Miles 2 190
Breaking Bread - A Memoir
Jonathan Jansen Paperback R330 R220 Discovery Miles 2 200
Remains, Historical and Literary…
Chetham Society Paperback R468 Discovery Miles 4 680
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, … Paperback  (1)
R340 R292 Discovery Miles 2 920
Full House - A Wild Cards Collection
George R. R. Martin Paperback R527 R450 Discovery Miles 4 500
Damaged Goods - The Rise and Fall of Sir…
Oliver Shah Paperback  (1)
R301 R246 Discovery Miles 2 460
Beauties of Shakespeare CB - Eighteenth…
Dodd William Book R1,046 Discovery Miles 10 460
This Is How It Is - True Stories From…
The Life Righting Collective Paperback R265 R207 Discovery Miles 2 070
Eat, Drink & Blame The Ancestors - The…
Ndumiso Ngcobo Paperback R375 Discovery Miles 3 750

 

Partners