![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7-11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.
This volume collects together research and survey papers written by invited speakers of the conference celebrating the 70th birthday of Laszlo Lovasz. The topics covered include classical subjects such as extremal graph theory, coding theory, design theory, applications of linear algebra and combinatorial optimization, as well as recent trends such as extensions of graph limits, online or statistical versions of classical combinatorial problems, and new methods of derandomization. Laszlo Lovasz is one of the pioneers in the interplay between discrete and continuous mathematics, and is a master at establishing unexpected connections, "building bridges" between seemingly distant fields. His invariably elegant and powerful ideas have produced new subfields in many areas, and his outstanding scientific work has defined and shaped many research directions in the last 50 years. The 14 contributions presented in this volume, all of which are connected to Laszlo Lovasz's areas of research, offer an excellent overview of the state of the art of combinatorics and related topics and will be of interest to experienced specialists as well as young researchers.
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7-11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Szemeredi's influence on today's mathematics, especially in combinatorics, additive number theory, and theoretical computer science, is enormous. This volume is a celebration of Szemeredi's achievements and personality, on the occasion of his seventieth birthday. It exemplifies his extraordinary vision and unique way of thinking. A number of colleagues and friends, all top authorities in their fields, have contributed their latest research papers to this volume. The topics include extension and applications of the regularity lemma, the existence of k-term arithmetic progressions in various subsets of the integers, extremal problems in hypergraphs theory, and random graphs, all of them beautiful, Szemeredi type mathematics. It also contains published accounts of the first two, very original and highly successful Polymath projects, one led by Tim Gowers and the other by Terry Tao.
This volume collects together research and survey papers written by invited speakers of the conference celebrating the 70th birthday of Laszlo Lovasz. The topics covered include classical subjects such as extremal graph theory, coding theory, design theory, applications of linear algebra and combinatorial optimization, as well as recent trends such as extensions of graph limits, online or statistical versions of classical combinatorial problems, and new methods of derandomization. Laszlo Lovasz is one of the pioneers in the interplay between discrete and continuous mathematics, and is a master at establishing unexpected connections, "building bridges" between seemingly distant fields. His invariably elegant and powerful ideas have produced new subfields in many areas, and his outstanding scientific work has defined and shaped many research directions in the last 50 years. The 14 contributions presented in this volume, all of which are connected to Laszlo Lovasz's areas of research, offer an excellent overview of the state of the art of combinatorics and related topics and will be of interest to experienced specialists as well as young researchers.
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Caratheodory, and the $(p, q)$ theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory. The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.
|
![]() ![]() You may like...
Imaging of Complex Media with Acoustic…
& Mathias Fink, William A. Kuperman, …
Hardcover
R5,637
Discovery Miles 56 370
Scheduling in Industry 4.0 and Cloud…
Boris Sokolov, Dmitry Ivanov, …
Hardcover
R3,637
Discovery Miles 36 370
Did the Anglicans and Roman Catholics…
Colin Buchanan
Hardcover
Society, Health And Disease In South…
Leah Gilbert, Liz Walker, …
Paperback
|