Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
In The Netherlands, Belgium and other European countries, manganese is removed by conventional groundwater treatment with aeration and rapid (sand) filtration. Such a treatment process is easy to operate, cost effective and sustainable, because it does not make use of strong oxidants such as O3, Cl2, ClO2 and KMnO4 with the associated risk of by-product formation and over or under dosing. However, application of aeration-filtration is also facing drawbacks, especially the long ripening time of filter media. Due to the long ripening time, water companies have to waste large volumes of treated water, making this process less sustainable. Also, costs associated with filter media ripening (man power, electricity, operational and analysis costs) are high. Therefore decreasing the filter ripening time, regarding manganese removal is a big issue. Although already extended research has been carried out into manganese removal, the controlling mechanisms, especially of the start up face of filter media ripening, are not fully understood yet. The emphasis of this thesis is to provide a better understanding of the mechanisms involved in the ripening of virgin filter media, regarding manganese removal and how to shorten or completely eliminate the long ripening period of filters with virgin material. This thesis therefore highlights the role of the formation of a manganese oxide coating on virgin filter media. Characterization and identification revealed that the responsible manganese oxide for an effective manganese removal was Birnessite. It was found that Birnessite, formed at the beginning of the ripening process was of a biological origin. Based on the knowledge that manganese removal in conventional groundwater treatment is initiated biologically, long ripening times may be reduced by creating conditions favouring the growth of manganese oxidizing bacteria, e.g., by limiting the back wash frequency and / or intensity. Additionally, this thesis also shows that the use of freshly prepared manganese oxide, containing Birnessite, can completely eliminate filter media ripening time.
In The Netherlands, Belgium and other European countries, manganese is removed by conventional groundwater treatment with aeration and rapid (sand) filtration. Such a treatment process is easy to operate, cost effective and sustainable, because it does not make use of strong oxidants such as O3, Cl2, ClO2 and KMnO4 with the associated risk of by-product formation and over or under dosing. However, application of aeration-filtration is also facing drawbacks, especially the long ripening time of filter media. Due to the long ripening time, water companies have to waste large volumes of treated water, making this process less sustainable. Also, costs associated with filter media ripening (man power, electricity, operational and analysis costs) are high. Therefore decreasing the filter ripening time, regarding manganese removal is a big issue. Although already extended research has been carried out into manganese removal, the controlling mechanisms, especially of the start up face of filter media ripening, are not fully understood yet. The emphasis of this thesis is to provide a better understanding of the mechanisms involved in the ripening of virgin filter media, regarding manganese removal and how to shorten or completely eliminate the long ripening period of filters with virgin material. This thesis therefore highlights the role of the formation of a manganese oxide coating on virgin filter media. Characterization and identification revealed that the responsible manganese oxide for an effective manganese removal was Birnessite. It was found that Birnessite, formed at the beginning of the ripening process was of a biological origin. Based on the knowledge that manganese removal in conventional groundwater treatment is initiated biologically, long ripening times may be reduced by creating conditions favouring the growth of manganese oxidizing bacteria, e.g., by limiting the back wash frequency and / or intensity. Additionally, this thesis also shows that the use of freshly prepared manganese oxide, containing Birnessite, can completely eliminate filter media ripening time.
|
You may like...
|