Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Decision making is certainly a very crucial component of many human activities. It is, therefore, not surprising that models of decisions play a very important role not only in decision theory but also in areas such as operations Research, Management science, social Psychology etc . . The basic model of a decision in classical normative decision theory has very little in common with real decision making: It portrays a decision as a clear-cut act of choice, performed by one individual decision maker and in which states of nature, possible actions, results and preferences are well and crisply defined. The only compo nent in which uncertainty is permitted is the occurence of the different states of nature, for which probabilistic descriptions are allowed. These probabilities are generally assumed to be known numerically, i. e. as single probabili ties or as probability distribution functions. Extensions of this basic model can primarily be conceived in three directions: 1. Rather than a single decision maker there are several decision makers involved. This has lead to the areas of game theory, team theory and group decision theory. 2. The preference or utility function is not single valued but rather vector valued. This extension is considered in multiattribute utility theory and in multicritieria analysis. 3."
We live, unfortunately, in turbulent and difficult times plagued by various political, economic, and social problems, as well as by natural disasters worldwide. Systems become more and more complicated, and this concerns all levels, exemplified first by global political alliances, groups of countries, regions, etc., and secondly, by multinational (global) corporations and companies of all sizes. These same concerns affect all social groups. This all makes decision processes very complicated. In virtually all decision processes in these complicated systems, there are various actors (decision makers) who represent individual subjects (persons, countries, companies, etc.) and their respective interest groups. To reach a meaningful (good) decision, opinions of all such actors must be taken into account or a given decision may be rejected and not implemented. Ideally, a decision would be made after a consensus between the parties involved had been attained. So, consensus is a very desirable situation. In most real-world cases there is considerable uncertainty concerning all aspects of the decision making process. Moreover, opinions, goals, constraints, etc. are usually imprecisely known. This makes the decision making process difficult as one cannot employ conventional "hard" tools.
Aggregation plays a central role in many of the technological tasks we are faced with. The importance of this process will become even greater as we move more and more toward becoming an information-cent.ered society, us is happening with the rapid growth of the Internet and the World Wirle Weh. Here we shall be faced with many issues related to the fusion of information. One very pressing issue here is the development of mechanisms to help search for information, a problem that clearly has a strong aggregation-related component. More generally, in order to model the sophisticated ways in which human beings process information, as well as going beyond the human capa bilities, we need provide a basket of aggregation tools. The centrality of aggregation in human thought can be be very clearly seen by looking at neural networks, a technology motivated by modeling the human brain. One can see that the basic operations involved in these networks are learning and aggregation. The Ordered Weighted Averaging (OWA) operators provide a parameter ized family of aggregation operators which include many of the well-known operators such as the maximum, minimum and the simple average."
This two volume set of books constitutes the proceedings of the 2014 7th IEEE International Conference Intelligent Systems (IS), or IEEE IS'2014 for short, held on September 24-26, 2014 in Warsaw, Poland. Moreover, it contains some selected papers from the collocated IWIFSGN'2014 - Thirteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets. The conference was organized by theSystems Research Institute, Polish Academy of Sciences, Department IV of Engineering Sciences, Polish Academy of Sciences, and Industrial Institute of Automation and Measurements - PIAP. The papers included in the two proceedings volumes have been subject to a thorough review process by three highly qualified peer reviewers.Comments and suggestions from them have considerable helped improve the quality of the papers but also the division of the volumes into parts, and assignment of the papers to the best suited parts.
This two volume set of books constitutes the proceedings of the 2014 7th IEEE International Conference Intelligent Systems (IS), or IEEE IS'2014 for short, held on September 24-26, 2014 in Warsaw, Poland. Moreover, it contains some selected papers from the collocated IWIFSGN'2014-Thirteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets.The conference was organized by the Systems Research Institute, Polish Academy of Sciences, Department IV of Engineering Sciences, Polish Academy of Sciences, and Industrial Institute of Automation and Measurements - PIAP.The papers included in the two proceedings volumes have been subject to a thorough review process by three highly qualified peer reviewers.Comments and suggestions from them have considerable helped improve the quality of the papers but also the division of the volumes into parts, and assignment of the papers to the best suited parts.
Optimization is of central concern to a number of discip lines. Operations Research and Decision Theory are often consi dered to be identical with optimizationo But also in other areas such as engineering design, regional policy, logistics and many others, the search for optimal solutions is one of the prime goals. The methods and models which have been used over the last decades in these areas have primarily been "hard" or "crisp," i. e. the solutions were considered to be either fea sible or unfeasible, either above a certain aspiration level or below. This dichotomous structure of methods very often forced the modeller to approximate real problem situations of the more-or-less type by yes-or-no-type models, the solutions of which might turn out not to be the solutions to the real prob lems. This is particularly true if the problem under considera tion includes vaguely defined relationships, human evaluations, uncertainty due to inconsistent or incomplete evidence, if na tural language has to be modelled or if state variables can only be described approximately. Until recently, everything which was not known with cer tainty, i. e. which was not known to be either true or false or which was not known to either happen with certainty or to be impossible to occur, was modelled by means of probabilitieso This holds in particular for uncertainties concerning the oc currence of events."
We live, unfortunately, in turbulent and difficult times plagued by various political, economic, and social problems, as well as by natural disasters worldwide. Systems become more and more complicated, and this concerns all levels, exemplified first by global political alliances, groups of countries, regions, etc., and secondly, by multinational (global) corporations and companies of all sizes. These same concerns affect all social groups. This all makes decision processes very complicated. In virtually all decision processes in these complicated systems, there are various actors (decision makers) who represent individual subjects (persons, countries, companies, etc.) and their respective interest groups. To reach a meaningful (good) decision, opinions of all such actors must be taken into account or a given decision may be rejected and not implemented. Ideally, a decision would be made after a consensus between the parties involved had been attained. So, consensus is a very desirable situation. In most real-world cases there is considerable uncertainty concerning all aspects of the decision making process. Moreover, opinions, goals, constraints, etc. are usually imprecisely known. This makes the decision making process difficult as one cannot employ conventional "hard" tools.
Aggregation plays a central role in many of the technological tasks we are faced with. The importance of this process will become even greater as we move more and more toward becoming an information-cent.ered society, us is happening with the rapid growth of the Internet and the World Wirle Weh. Here we shall be faced with many issues related to the fusion of information. One very pressing issue here is the development of mechanisms to help search for information, a problem that clearly has a strong aggregation-related component. More generally, in order to model the sophisticated ways in which human beings process information, as well as going beyond the human capa bilities, we need provide a basket of aggregation tools. The centrality of aggregation in human thought can be be very clearly seen by looking at neural networks, a technology motivated by modeling the human brain. One can see that the basic operations involved in these networks are learning and aggregation. The Ordered Weighted Averaging (OWA) operators provide a parameter ized family of aggregation operators which include many of the well-known operators such as the maximum, minimum and the simple average."
Decision making is certainly a very crucial component of many human activities. It is, therefore, not surprising that models of decisions play a very important role not only in decision theory but also in areas such as operations Research, Management science, social Psychology etc . . The basic model of a decision in classical normative decision theory has very little in common with real decision making: It portrays a decision as a clear-cut act of choice, performed by one individual decision maker and in which states of nature, possible actions, results and preferences are well and crisply defined. The only compo nent in which uncertainty is permitted is the occurence of the different states of nature, for which probabilistic descriptions are allowed. These probabilities are generally assumed to be known numerically, i. e. as single probabili ties or as probability distribution functions. Extensions of this basic model can primarily be conceived in three directions: 1. Rather than a single decision maker there are several decision makers involved. This has lead to the areas of game theory, team theory and group decision theory. 2. The preference or utility function is not single valued but rather vector valued. This extension is considered in multiattribute utility theory and in multicritieria analysis. 3."
The general scope of the book covers diverse areas of fuzzy systems, soft computing, AI tools such as uncertain computation, decision-making under imperfect information, deep learning, and others. The topics of the papers include theory and application of Soft Computing, Neuro-Fuzzy Technology, Intelligent Control, Deep Learning-Machine Learning, Fuzzy Logic in Data Analytics, Evolutionary Computing, Fuzzy logic and Artificial Intelligence in Engineering, Social Sciences, Business, Economics, Material Sciences, and others.This book presents the proceedings of the 16th International Conference on Applications of Fuzzy Systems, Soft Computing, and Artificial Intelligence Tools, ICAFS-2022, held in Budva, Montenegro, on August 26-27, 2022. This is a useful guide for academics, practitioners, and graduates in fields of fuzzy logic and soft computing. It allows for increasing of interest in development and applying of these paradigms in various real-life fields.
Multistage Fuzzy Control a model-based approach to fuzzy control and decision making Fuzzy techniques are used to cope with imprecision in the control process. This authoritative book explains the essential principles of fuzzy logic and describes both the theoretical and practical advantages of the new model-based, prescriptive approach. Professor Kacprzyk offers a comprehensive and in depth examination of the issues underlying multistage control and decision analysis, addressing in particular fuzzy dynamic systems, fuzzy events, fuzzy probabilities and fuzzy quantifiers. The text also comprises an introduction to the basic concepts of fuzzy sets, fuzzy logic and fuzzy systems, complemented by real-world examples of the use of the model-based prescriptive approach to improve the efficiency of fuzzy control systems. Highly experienced in fuzzy control research, the author identifies new trends in the development of fuzzy sets and their direct application to decision-making processes. Fuzzy control engineers, researchers and postgraduate students will find this an ideal reference, offering a wealth of ideas for enhancing the performance of fuzzy control systems and equipping them with the tools to resolve genuine problems. Multistage Fuzzy Control is an essential handbook for those wishing to resolve real-world problems in control and decision analysis through the use of fuzzy-logic-based methods.
|
You may like...
So Lyk 'n Vrou - My 40 Jaar Van Hel Saam…
Ilse Verster
Paperback
(1)
Life and Religion of the Hindoos - With…
Joguth Chunder Gangooly
Paperback
R501
Discovery Miles 5 010
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
|