Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Microcluster Physics provides a lucid account of the fundamental physics of all types of microclusters, outlining the dynamics and static properties of this new phase of matter intermediate between a solid and a molecule. Since originally published in 1991, the field of microclusters has experienced surprising developments, which are reviewed in this new edition: The determination of atomic structure, spontaneous alloying, super-shell, fission, fragmentation, evaporation, magnetism, fullerenes, nanotubes, atomic structure of large silicon clusters, superfluidity of a He cluster, water clusters in liquid, electron correlation and optimizsation of the geometry, and scattering.
Microcluster Physics provides a lucid account of the fundamental physics of all types of microclusters, outlining the dynamics and static properties of this new phase of matter intermediate between a solid and a molecule. Since originally published in 1991, the field of microclusters has experienced surprising developments, which are reviewed in this new edition: The determination of atomic structure, spontaneous alloying, super-shell, fission, fragmentation, evaporation, magnetism, fullerenes, nanotubes, atomic structure of large silicon clusters, superfluidity of a He cluster, water clusters in liquid, electron correlation and optimizsation of the geometry, and scattering.
This book aims at providing graduate students and researchers with funda mental knowledge indispensable for entering the new field of "microclus 3 ters." Microclusters consisting of 10 to 10 atoms exhibit neither the pro perties of the corresponding bulk nor those of the corresponding molecule of a few atoms. The microclusters may be considered to form a new phase of materials lying between macroscopic solids and microscopic particles such as atoms and molecules, showing both macroscopic and microscopic features. However, research into such"a riew phase has been left untouched until recent years by the development of the quantum theory of matter. The microscopic features of microclusters were first revealed by ob serving anomalies of the mass spectrum of a Na cluster beam at specific sizes, called magic numbers. Then it was experimentally confirmed that the magic numbers come from the shell structure of valence electrons. Being stimulated by these epoch-making findings in metal microclusters and aided by progress of the experimental techniques producing relatively dense, non interacting micro clusters of various sizes in the form of micro cluster beams, the research field of microclusters has developed rapidly in these 5 to 7 years. The progress is also due to the improvement of computers and com putational techniques, which have made it possible to perform ab initio cal culations of the atomic and electronic structure of smaller microclusters, as well as to carry out computer simulations of their dynamics."
Microcrystals large enough to be seen in an electron microscope have long been objects of intense scientific and technological interest. Recently, it has become possible to study properties of even smaller units of matter, clusters, thus allowing the last gap betweeen molecules and crystals to be bridged. This book presents the experimental and theoretical techniques needed to study this new state of condensed matter. The material is presented so as to be understandable to an audience with varied backgrounds and interests. At the beginning of each part basic concepts are quickly reviewed for graduate students and for experts who wish to broaden their interest in theory and experiments. The concepts are then applied to current problems of general interest. The basic subjects covered by the book are cluster sources, the evolution of electronic properties of condensed matter, the microscopic view of crystal growth, the chemical reactivity of clusters, cluster stability and fragmentation.
This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr- sitions and thermodynamic properties in general. A number of excellent revIew articles, listed in the bibliography, cover this material. Likewise, little is said about scattering off solid surfaces; this subject is again covered in several books and many review articles. Lastly, little is said about chemisorption kinetics, for which microscopic thebries and models have not been fully developed but are still at a rather early exploratory stage.
|
You may like...
Macroeconomics - South African Edition
Gregory Mankiw, Mark Taylor, …
Hardcover
Decolonising The University
Gurminder K Bhambra, Dalia Gebrial, …
Paperback
(7)
Educational Psychology In Social Context…
D. Donald, S. Lazarus
Paperback
|