Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
1 Structures of and Bonding in Electronic Materials.- 1. Introduction.- 2. The Structure of the Group IV Elements and of III-V and II-VI Semiconductors.- 3. Bonding in and Relationships Between Zinc Blende and Wurtzite-Type Compounds.- 4. Other Structure Types.- References.- 2 Electron Energy Bands.- 1. Introduction.- 2. Models.- 2.1. The Nearly Free Electron Model.- 2.2. The Tight-Binding Model.- 2.3. The Relationship Between the Results of the Two Models.- 2.4. The Relationship Between Maximum Energy and k.- 2.5. Three-Dimensional Effects.- 2.6. Real Materials.- 3. Effective Mass.- 4. Positive Holes.- 5. Methods of Computing Band Structure.- 6. Conductance, the Octet Rule, and Bands.- 7. Postscript: The Kronig-Penney Model.- References.- 3 Electrical Properties of Semiconductors.- 1. Introduction.- 2. Intrinsic Semiconductors.- 3. Extrinsic Semiconductors.- 4. Scattering and Mobility of Charge Carriers.- 5. High-Field Effects.- 4 Optical Properties.- 1. Introduction.- 2. The Classical Approach.- 2.1. Relation to Conductivity.- 2.2. Optical Constants and Relative Permittivity.- 2.3. Resonance.- 3. Absorption Mechanisms.- 3.1. Fundamental Absorption.- 3.2. Other Mechanisms.- 4. Photoconductivity.- 5. Emission.- 5.1. Spontaneous Emission.- 5.2. Stimulated Emission.- 5.3. Nonradiative Recombination.- 6. Anisotropic Materials.- 7. Polarized Light.- 8. Thin-Film Systems.- 5 Interfaces and Low-Dimensional Structures.- 1. Introduction.- 2. Band Structure at a Heterojunction Interface.- 3. Low-Dimensional Effects.- 4. New Effects in Low-Dimensional Structures.- 5. Materials Growth.- 6. Other Low-Dimensional Structures.- 7. Applications.- 8. Conclusions.- References.- 6 Key Electrical Devices.- 1. Introduction.- 2. Basic Semiconductor Diodes.- 2.1. The p-n Junction Diode.- 2.2. The Metal-Semiconductor or Schottky Diode.- 2.3. Ohmic Contacts.- 3. Bipolar Junction Transisistors.- 4. Field Effect Transistors.- 4.1. MOSFETs.- 4.2. JFETs and MESFETs.- 5. Materials for Electronic Devices: The Significance of Silicon.- 6. Gallium-Arsenide-Based Transistors.- 6.1. The GaAs MESFET.- 6.2. Heterojunction-Based Devices.- 7. Other Materials.- 8. Conclusions and Future Prospects.- References.- 7 Key Optoelectronic Devices.- 1. Introduction.- 2. Materials Technologies.- 2.1. Important Optoelectronic Materials.- 2.2. Epitaxy.- 3. Light-Emitting Devices.- 3.1. Basic Principles.- 3.2. Light-Emitting Diodes (LEDs).- 3.3. Semiconductor Lasers.- 4. Optical Detectors.- 5. Waveguide Components.- 6. Optoelectronic Integrated Circuits.- 7. Conclusions.- 8 Thermodynamics and Defect Chemistry of Compound Semiconductors.- 1. Introduction.- 2. Elements of Multicomponent Phase Equilibria.- 2.1. Gibbs's Phase Rule.- 2.2. Pressure-Temperature Equilibrium.- 2.3. Solid-Liquid Equilibria in Multicomponent Systems.- 2.4. Representation of the Activity Coefficients.- 3. Solid-Liquid Phase Equilibria in Ternary III-V Compounds...- 4. Solid-Gas Phase Equilibria in Multicomponent III-V compounds.- 5. Native Point Defects in Compound Semiconductors.- 6. The Incorporation of Solute (Dopant) Atoms.- 7. Summary and Conclusions.- References.- 9 Single Crystal Growth I: Melt Growth.- 1. Introduction: General Principles.- 2. Role of Melt Growth.- 3. Constraints to Melt Growth.- 3.1. Chemical Reactivity.- 3.2. Vapor Pressure.- 3.3. Mechanical.- 3.4. Fundamental.- 4. Techniques of Melt Growth.- 4.1. Vertical Pulling or Czochralski Growth.- 4.2. Float Zone.- 4.3. Horizontal Bridgman.- 4.4 Liquid Encapsulation.- 5. Fundamentals.- References.- 10 Single Crystal Growth II: Epitaxial Growth.- 1. Introduction: General Principles.- 2. Role of Epitaxy.- 3. Constraints to Epitaxial Growth.- 3.1. Liquid Phase Epitaxy (LPE).- 3.2. Vapor Phase Epitaxy (VPE).- 4. Techniques of Epitaxial Growth.- 4.1. Liquid Phase Epitaxy.- 4.2. Vapor Phase Epitaxy: Conventional Inorganic Epitaxy.- 4.3. Molecular Beam Epitaxy (MBE): Metalorganic Molecular Beam Epitaxy (MOMBE).- 4.4. Metalorganic Vapor Phase Ep...
Electronic materials are a dominant factor in many areas of modern technology. The need to understand'them is paramount; this book addresses that need. The main aim of this volume is to provide a broad unified view of electronic materials, including key aspects of their science and technology and also, in many cases, their commercial implications. It was considered important that much of the contents of such an overview should be intelligible by a broad audience of graduates and industrial scientists, and relevant to advanced undergraduate studies. It should also be up to date and even looking forward to the future. Although more extensive, and written specifically as a text, the resulting book has much in common with a short course of the same name given at Coventry Polytechnic. The interpretation of the term "electronic materials" used in this volume is a very broad one, in line with the initial aim. The principal restriction is that, with one or two minor exceptions relating to aspects of device processing, for example, the materials dealt with are all active materials. Materials such as simple insulators or simple conductors, playing only a passive role, are not singled out for consider ation. Active materials might be defined as those involved in the processing of signals in a way that depends crucially on some specific property of those materials, and the immediate question then concerns the types of signals that might be considered."
|
You may like...
No Retreat, No Surrender - The Inspiring…
Oscar Chalupsky, Graham Spence
Paperback
The How Not To Die Cookbook - Over 100…
Michael Greger
Paperback
(2)
|