Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Conceived by Count Jacopo Francesco Riccati more than a quarter of a millennium ago, the Riccati equation has been widely studied in the subsequent centuries. Since its introduction in control theory in the sixties, the matrix Riccati equation has known an impressive range of applications, such as optimal control, H? optimization and robust stabilization, stochastic realization, synthesis of linear passive networks, to name but a few. This book consists of 11 chapters surveying the main concepts and results related to the matrix Riccati equation, both in continuous and discrete time. Theory, applications and numerical algorithms are extensively presented in an expository way. As a foreword, the history and prehistory of the Riccati equation is concisely presented.
Conceived by Count Jacopo Francesco Riccati more than a quarter of a millennium ago, the Riccati equation has been widely studied in the subsequent centuries. Since its introduction in control theory in the sixties, the matrix Riccati equation has known an impressive range of applications, such as optimal control, H? optimization and robust stabilization, stochastic realization, synthesis of linear passive networks, to name but a few. This book consists of 11 chapters surveying the main concepts and results related to the matrix Riccati equation, both in continuous and discrete time. Theory, applications and numerical algorithms are extensively presented in an expository way. As a foreword, the history and prehistory of the Riccati equation is concisely presented.
The problem of obtaining dynamical models directly from an observed time-series occurs in many fields of application. There are a number of possible approaches to this problem. In this volume a number of such points of view are exposed: the statistical time series approach, a theory of guaranted performance, and finally a deterministic approximation approach. This volume is an out-growth of a number of get-togethers sponsered by the Systems and Decision Sciences group of the International Institute of Applied Systems Analysis (IIASA) in Laxenburg, Austria. The hospitality and support of this organization is gratefully acknowledged. Jan Willems Groningen, the Netherlands May 1989 TABLE OF CONTENTS Linear System Identification- A Survey page 1 M. Deistler A Tutorial on Hankel-Norm Approximation 26 K. Glover A Deterministic Approach to Approximate Modelling 49 C. Heij and J. C. Willems Identification - a Theory of Guaranteed Estimates 135 A. B. Kurzhanski Statistical Aspects of Model Selection 215 R. Shibata Index 241 Addresses of Authors 246 LINEAR SYSTEM IDENTIFICATION* A SURVEY M. DEISTLER Abstract In this paper we give an introductory survey on the theory of identification of (in general MIMO) linear systems from (discrete) time series data. The main parts are: Structure theory for linear systems, asymptotic properties of maximum likelihood type estimators, estimation of the dynamic specification by methods based on information criteria and finally, extensions and alternative approaches such as identification of unstable systems and errors-in-variables. Keywords Linear systems, parametrization, maximum likelihood estimation, information criteria, errors-in-variables.
System and Control theory is one of the most exciting areas of contemporary engineering mathematics. From the analysis of Watt's steam engine governor - which enabled the Industrial Revolution - to the design of controllers for consumer items, chemical plants and modern aircraft, the area has always drawn from a broad range of tools. It has provided many challenges and possibilities for interaction between engineering and established areas of 'pure' and 'applied' mathematics. This impressive volume collects a discussion of more than fifty open problems which touch upon a variety of subfields, including: chaotic observers, nonlinear local controlability, discrete event and hybrid systems, neural network learning, matrix inequalities, Lyapunov exponents, and many other issues. Proposed and explained by leading researchers, they are offered with the intention of generating further work, as well as inspiration for many other similar problems which may naturally arise from them. With extensive references, this book will be a useful reference source - as well as an excellent addendum to the textbooks in the area.
This is a collection of articles by friends, co-authors, colleagues, and students of Keith Glover, Professor of Engineering at the University of Cambridge, on the occasion of his 60th birthday. Professor Glover's work spans a variety of topics, including system identification, model reduction and approximation, robust controller synthesis, and control of aircraft and engines. The collection is a tribute to Professor Glover's seminal work in these areas.
This book contains the text of the plenary lectures and the mini-courses of the European Control Conference (ECC'93) held in Groningen, the Netherlands, June 2S-July 1, 1993. However, the book is not your usu al conference proceedings. Instead, the authors took this occasion to take a broad overview of the field of control and discuss its development both from a theoretical as well as from an engineering perpective. The first essay is by the key-note speaker ofthe conference, A.G.J. Mac Farlane. It consists of a non-technical discussion of information processing and knowledge acquisition as the key features of control engineering tech nology. The next six articles are accounts of the plenary addresses. The contribution by R.W. Brockett concerns a mathematical framework for modelling motion control, a central question in robotics and vision. In the paper by M. Morari the engineering and the economic relevance of chemical process control are considered, in particular statistical quality control and the control of systems with constraints. The article by A.C.P.M. Backx is written from an industrial perspec tive. The author is director of an engineering consulting firm involved in the design of industrial control equipment. Specifically, the possibility of obtaining high performance and reliable controllers by modelling, identifi cation, and optimizing industrial processes is discussed.
This Festschrift, published on the occasion of the sixtieth birthday of Yutaka - mamoto ('YY' as he is occasionally casually referred to), contains a collection of articles by friends, colleagues, and former Ph.D. students of YY. They are a tribute to his friendship and his scienti?c vision and oeuvre, which has been a source of inspiration to the authors. Yutaka Yamamoto was born in Kyoto, Japan, on March 29, 1950. He studied applied mathematics and general engineering science at the Department of Applied Mathematics and Physics of Kyoto University, obtaining the B.S. and M.Sc. degrees in 1972 and 1974. His M.Sc. work was done under the supervision of Professor Yoshikazu Sawaragi. In 1974, he went to the Center for Mathematical System T- ory of the University of Florida in Gainesville. He obtained the M.Sc. and Ph.D. degrees, both in Mathematics, in 1976 and 1978, under the direction of Professor Rudolf Kalman.
This is a book about modelling, analysis and control of linear time- invariant systems. The book uses what is called the behavioral approach towards mathematical modelling. Thus a system is viewed as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. In the first part of the book the structure of the set of trajectories that such dynamical systems generate is analyzed. Conditions are obtained for two systems of differential equations to be equivalent in the sense that they define the same behavior. It is further shown that the trajectories of such linear differential systems can be partitioned in free inputs and bound outputs. In addition the memory structure of the system is analyzed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. An essential feature of using the behavioral approach is that it allows these and similar concepts to be introduced in a representation-free manner. In the third part control problems are considered, more specifically stabilization and pole placement questions. This text is suitable for advanced undergraduate or beginning graduate students in mathematics and engineering. It contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.
|
You may like...
Tesourus Van Afrikaans
Leon De Stadler, Marquerite De Stadler
Hardcover
Lucid Dreaming & Astral Projection Made…
Spiritual Awakening Academy
Hardcover
R806
Discovery Miles 8 060
|