![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This book focuses on the characterization of the amorphous phase of polymers, whether they are pure amorphous or semi-crystalline ones, above Tg or below Tg, by studying the relaxation of dipoles and space charges naturally found in their structure after they have been activated by the application of a voltage field. The experimental deconvolution of the relaxation modes responsible for internal motion in the amorphous phase is coupled with a mathematical procedure (Thermal-Windowing Deconvolution-TWD) that leads to the understanding of their coupling characteristics which, it is shown, relate to the state of the material itself, for instance its non-equilibrium state or its internal stress for matter belonging to interfaces between aggregated or dispersed phases. Describes quantitatively the Thermal Stimulated Depolarization techniques of polymer characterization (TSD, TWD), i.e. how to decouple the relaxation modes collectively interacting (interactive coupling) and relate it to the thermodynamic properties of the amorphous phase. Understands the results of depolarization in terms of the new physics of polymer interactions: the Dual-Phase model, here applied to the dipoles-space charge dynamics. Provides a roaster of CASE STUDIES: practical applications of the TSD and TWD characterization techniques to describe coupled molecular motions in resins, medical tissues, wood, blends and block copolymers interfaces, rubbers, can coatings, internal stress in molded parts, etc
Understanding of polymer interactions is important for effective processing of plastics and their blends, mixing with nanoparticles, and understanding of their mechanical and physical (e.g., electrical) properties. This book describes a new physics of interactions in polymers that challenges existing theories, and explains the concept of entanglement in a very different way. Rheology is formulated with different parameters defi ning the physics of dual-phase and cross-dual-phase. The rubbery behavior of thermoplastics is explained quite differently to conventional theory. Rheo-fluidification experiments which are applicable to industry (injection molding, extrusion, sheet forming, etc.) are described and analyzed, including molding under conditions of reduced viscosity (up to several hundred percent). The application of this theory to industry has already been proven by a number of successful derived inventions.
|
![]() ![]() You may like...
Robert - A Queer And Crooked Memoir For…
Robert Hamblin
Paperback
![]()
I Shouldnt Be Telling You This
Jeff Goldblum, The Mildred Snitzer Orchestra
CD
R61
Discovery Miles 610
|