0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Paris-Princeton Lectures on Mathematical Finance 2004 (Paperback, 2007 ed.): Rene Carmona Paris-Princeton Lectures on Mathematical Finance 2004 (Paperback, 2007 ed.)
Rene Carmona; Edited by Rene Carmona; Ivar Ekeland; Edited by Erhan Cinlar, Ivar Ekeland, …
R1,521 Discovery Miles 15 210 Ships in 10 - 15 working days

This is the third volume in the Paris-Princeton Lectures in Financial Mathematics, which publishes, on an annual basis, cutting-edge research in self-contained, expository articles from outstanding specialists, both established and upcoming. Coverage includes articles by Ren Carmona, Ivar Ekeland/Erik Taflin, Arturo Kohatsu-Higa, Pierre-Louis Lions/Jean-Michel Lasry, and Huy n Pham.

The Master Equation and the Convergence Problem in Mean Field Games - (AMS-201) (Paperback): Pierre Cardaliaguet, Francois... The Master Equation and the Convergence Problem in Mean Field Games - (AMS-201) (Paperback)
Pierre Cardaliaguet, Francois Delarue, Jean-Michel Lasry, Pierre-Louis Lions
R2,414 Discovery Miles 24 140 Ships in 10 - 15 working days

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity. Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit. This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

The Master Equation and the Convergence Problem in Mean Field Games - (AMS-201) (Hardcover): Pierre Cardaliaguet, Francois... The Master Equation and the Convergence Problem in Mean Field Games - (AMS-201) (Hardcover)
Pierre Cardaliaguet, Francois Delarue, Jean-Michel Lasry, Pierre-Louis Lions
R3,826 Discovery Miles 38 260 Ships in 12 - 19 working days

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity. Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit. This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Photovoltaic Thermal Passive House…
Gopal Nath Tiwari, Neha Gupta Hardcover R5,411 Discovery Miles 54 110
Creativity - Patterns of Creative…
Paul Brutsche Hardcover R1,294 Discovery Miles 12 940
Harry Potter: A Pop-Up Guide To Hogwarts
Matthew Reinhart Hardcover R2,023 R1,245 Discovery Miles 12 450
The Oxford Handbook of Propaganda…
Jonathan Auerbach, Russ Castronovo Hardcover R4,980 Discovery Miles 49 800
Sympathy - A History
Eric Schliesser Hardcover R3,996 Discovery Miles 39 960
Mr. Cudworth's Sermon Preached Before…
Ralph Cudworth Paperback R398 Discovery Miles 3 980
Rapid Optima 20 Electric Contactless…
R2,989 R1,899 Discovery Miles 18 990
Focus On Operational Management - A…
Andreas de Beer, Dirk Roussow Paperback R521 Discovery Miles 5 210
Metakaolin and Fly Ash as Mineral…
Leonid Dvorkin, Vadim Zhitkovsky, … Hardcover R3,580 Discovery Miles 35 800
Power In Action - Democracy, Citizenship…
Steven Friedman Paperback R351 Discovery Miles 3 510

 

Partners