0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Generalized Convexity, Generalized Monotonicity: Recent Results - Recent Results (Hardcover, 1998 ed.): Jean-Pierre Crouzeix,... Generalized Convexity, Generalized Monotonicity: Recent Results - Recent Results (Hardcover, 1998 ed.)
Jean-Pierre Crouzeix, Juan-Enrique Martinez-Legaz, Michel Volle
R5,994 Discovery Miles 59 940 Ships in 10 - 15 working days

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems."

Optimisation convexe et inéquations variationnelles monotones (1�re �d. 2023): Jean-Pierre Crouzeix, Abdelhak Hassouni,... Optimisation convexe et inéquations variationnelles monotones (1�re �d. 2023)
Jean-Pierre Crouzeix, Abdelhak Hassouni, Eladio Ocaña-Anaya
R1,513 Discovery Miles 15 130 Ships in 10 - 15 working days

De nombreux systèmes physiques, mécaniques, financiers et économiques peuvent être décrits par des modèles mathématiques qui visent à optimiser des fonctions, trouver des équilibres et effectuer des arbitrages. Souvent, la convexité des ensembles et des fonctions ainsi que les conditions de monotonie sur les systèmes d'inéquations qui régissent ces systèmes se présentent naturellement dans les modèles. C'est dans cet esprit que nous avons conçu ce livre en mettant l'accent sur une approche géométrique qui privilégie l'intuition par rapport à une approche plus analytique. Les démonstrations des résultats classiques ont été revues dans cette optique et simplifiées. De nombreux exemples d'applications sont étudiés et des exercices sont proposés. Ce livre s'adresse aux étudiants en master de mathématiques appliquées, ainsi qu'aux doctorants, chercheurs et ingénieurs souhaitant comprendre les fondements de l'analyse convexe et de la théorie des inéquations variationnelles monotones.

Generalized Convexity, Generalized Monotonicity: Recent Results - Recent Results (Paperback, Softcover reprint of the original... Generalized Convexity, Generalized Monotonicity: Recent Results - Recent Results (Paperback, Softcover reprint of the original 1st ed. 1998)
Jean-Pierre Crouzeix, Juan-Enrique Martinez-Legaz, Michel Volle
R5,768 Discovery Miles 57 680 Ships in 10 - 15 working days

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Rogz Indoor 3D Pod Dog Bed (Petrol/Grey…
R1,775 Discovery Miles 17 750
Goldair USB Fan (Black | 15cm)
R150 Discovery Miles 1 500
Microsoft Xbox Series Wireless…
R1,699 R1,589 Discovery Miles 15 890
Koh-I-Noor Magic Set of Jumbo Triangular…
 (1)
R2,021 Discovery Miles 20 210
Rex Pet Grooming Brush
R159 R91 Discovery Miles 910
Ultimate Cookies & Cupcakes For Kids
Hinkler Pty Ltd Kit R299 R234 Discovery Miles 2 340
Ab Wheel
R209 R149 Discovery Miles 1 490
Bug-A-Salt 3.0 Yellow
R999 R749 Discovery Miles 7 490
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet Paperback  (7)
R365 R270 Discovery Miles 2 700
Bostik Glue Stick (40g)
R52 Discovery Miles 520

 

Partners