0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Hardcover,... Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Hardcover, 2001 ed.)
Hans D. Hochheimer, Bogdan Kuchta, Peter K. Dorhout, Jeffery L. Yarger
R4,324 Discovery Miles 43 240 Ships in 18 - 22 working days

In recent interactions with industrial companies it became quite obvious, that the search for new materials with strong anisotropic properties are of paramount importance for the development of new advanced electronic and magnetic devices. The questions concerning the tailoring of materials with large anisotropic electrical and thermal conductivity were asked over and over again. It became also quite clear that the chance to answer these questions and to find new materials which have these desired properties would demand close collaborations between scientists from different fields. Modem techniques ofcontrolled materials synthesis and advances in measurement and modeling have made clear that multiscale complexity is intrinsic to complex electronic materials, both organic and inorganic. A unified approach to classes of these materials is urgently needed, requiring interdisciplinary input from chemistry, materials science, and solid state physics. Only in this way can they be controlled and exploited for increasingly stringent demands oftechnology. The spatial and temporal complexity is driven by strong, often competing couplings between spin, charge and lattice degrees offreedom, which determine structure-function relationships. The nature of these couplings is a sensitive function of electron-electron, electron-lattice, and spin-lattice interactions; noise and disorder, external fields (magnetic, optical, pressure, etc. ), and dimensionality. In particular, these physical influences control broken-symmetry ground states (charge and spin ordered, ferroelectric, superconducting), metal-insulator transitions, and excitations with respect to broken-symmetries created by chemical- or photo-doping, especially in the form of polaronic or excitonic self-trapping.

Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Paperback,... Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Paperback, Softcover reprint of the original 1st ed. 2001)
Hans D. Hochheimer, Bogdan Kuchta, Peter K. Dorhout, Jeffery L. Yarger
R4,250 Discovery Miles 42 500 Ships in 18 - 22 working days

In recent interactions with industrial companies it became quite obvious, that the search for new materials with strong anisotropic properties are of paramount importance for the development of new advanced electronic and magnetic devices. The questions concerning the tailoring of materials with large anisotropic electrical and thermal conductivity were asked over and over again. It became also quite clear that the chance to answer these questions and to find new materials which have these desired properties would demand close collaborations between scientists from different fields. Modem techniques ofcontrolled materials synthesis and advances in measurement and modeling have made clear that multiscale complexity is intrinsic to complex electronic materials, both organic and inorganic. A unified approach to classes of these materials is urgently needed, requiring interdisciplinary input from chemistry, materials science, and solid state physics. Only in this way can they be controlled and exploited for increasingly stringent demands oftechnology. The spatial and temporal complexity is driven by strong, often competing couplings between spin, charge and lattice degrees offreedom, which determine structure-function relationships. The nature of these couplings is a sensitive function of electron-electron, electron-lattice, and spin-lattice interactions; noise and disorder, external fields (magnetic, optical, pressure, etc. ), and dimensionality. In particular, these physical influences control broken-symmetry ground states (charge and spin ordered, ferroelectric, superconducting), metal-insulator transitions, and excitations with respect to broken-symmetries created by chemical- or photo-doping, especially in the form of polaronic or excitonic self-trapping.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Umbrella That Changed the World
Bern Clay Paperback R206 R193 Discovery Miles 1 930
Sangria in the Sangraal - Tucked Away in…
Rhys Hughes Hardcover R727 Discovery Miles 7 270
12 Rules For Life - An Antidote To Chaos
Jordan B. Peterson Paperback  (2)
R275 R254 Discovery Miles 2 540
The Philosophical Magazine
Alexander Tilloch Paperback R644 Discovery Miles 6 440
A Diversity of Creatures
Rudyard Kipling Hardcover R811 Discovery Miles 8 110
Photographing the Invisible - Practical…
James Coates Hardcover R983 Discovery Miles 9 830
The Love of the Spirit Traced in His…
Robert Philip Paperback R534 Discovery Miles 5 340
Third Millennium Thinking - Creating…
Saul Perlmutter, Robert Maccoun, … Paperback R450 R402 Discovery Miles 4 020
Beyond Order - 12 More Rules For Life
Jordan B. Peterson Paperback R295 R272 Discovery Miles 2 720
Aids to the Study of Logic
William Henry Karslake Paperback R378 Discovery Miles 3 780

 

Partners