Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
|
Buy Now
Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Paperback, Softcover reprint of the original 1st ed. 2001)
Loot Price: R4,487
Discovery Miles 44 870
|
|
Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Paperback, Softcover reprint of the original 1st ed. 2001)
Series: NATO Science Series II: Mathematics, Physics and Chemistry, 48
Expected to ship within 10 - 15 working days
|
In recent interactions with industrial companies it became quite
obvious, that the search for new materials with strong anisotropic
properties are of paramount importance for the development of new
advanced electronic and magnetic devices. The questions concerning
the tailoring of materials with large anisotropic electrical and
thermal conductivity were asked over and over again. It became also
quite clear that the chance to answer these questions and to find
new materials which have these desired properties would demand
close collaborations between scientists from different fields.
Modem techniques ofcontrolled materials synthesis and advances in
measurement and modeling have made clear that multiscale complexity
is intrinsic to complex electronic materials, both organic and
inorganic. A unified approach to classes of these materials is
urgently needed, requiring interdisciplinary input from chemistry,
materials science, and solid state physics. Only in this way can
they be controlled and exploited for increasingly stringent demands
oftechnology. The spatial and temporal complexity is driven by
strong, often competing couplings between spin, charge and lattice
degrees offreedom, which determine structure-function
relationships. The nature of these couplings is a sensitive
function of electron-electron, electron-lattice, and spin-lattice
interactions; noise and disorder, external fields (magnetic,
optical, pressure, etc. ), and dimensionality. In particular, these
physical influences control broken-symmetry ground states (charge
and spin ordered, ferroelectric, superconducting), metal-insulator
transitions, and excitations with respect to broken-symmetries
created by chemical- or photo-doping, especially in the form of
polaronic or excitonic self-trapping.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.