![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
The growth of technology for chemical assessment has led to great developments in the investigation of chemical reactivity in recent years, but key information is often dispersed across many different research fields. Combining both original principles and the cutting-edge theories used in chemical reactivity analysis, Chemical Reactivity, Volume 1 present the latest developments in theoretical chemistry and its application for the assessment of chemical processes. Beginning with an exploration of different theories and principles relating to electronic structure and reactivity of confined electronic systems, the book goes on to highlight key information on such topics as Dyson orbitals, target-ion overlaps, reaction fragility, magnetizability principles and the Fuki function. Density Functional Theory is discussed in relation to numerous different principles and approaches, with further information on constrained methods and diabatic models, bonding evolution theory, orbital-based population analysis models and charge transfer models, and Quantum chemistry and QTAIM. Consolidating the knowledge of a global team of experts in the field, Chemical Reactivity, Volume 1: Theories and Principles is a useful resource for both students and researchers interested in gaining greater understanding of the principles and theories underpinning chemical reactivity analysis.
Encyclopedia of Nanomaterials, Three Volume Set provides a comprehensive reference work on the creation, characterization, property and processing of nanomaterials. Sections cover the synthesis, functionalization, assembly and characterization of nanomaterials, their chemical, physical and biological properties, their processing in the form of coating, special texture and surface patterns, nanodevice fabrication, large-scale manufacturing, and their health and environmental impacts. Focusing on the fundamental concepts of nanomaterials and the key processes to understand, manipulate, and process them, this reference gives readers the ability to design and produce nanomaterials according to the requirements of their specific applications. Further, this encyclopedia includes sections that specifically discuss the large-scale manufacture of nanomaterials and the possible environmental and health impacts of their widespread use in many practical settings. It is written for graduate students and researchers in various fields, including biomedicine, pharmaceutical industry, energy, environmental science, catalysis, etc.
Human Biochemistry, Second Edition provides a comprehensive, pragmatic introduction to biochemistry as it relates to human development and disease. Here, Gerald Litwack, award-wining researcher and longtime teacher, discusses the biochemical aspects of organ systems and tissue, cells, proteins, enzymes, insulins and sugars, lipids, nucleic acids, amino acids, polypeptides, steroids, and vitamins and nutrition, among other topics. Fully updated to address recent advances, the new edition features fresh discussions on hypothalamic releasing hormones, DNA editing with CRISPR, new functions of cellular prions, plant-based diet and nutrition, and much more. Grounded in problem-driven learning, this new edition features clinical case studies, applications, chapter summaries, and review-based questions that translate basic biochemistry into clinical practice, thus empowering active clinicians, students and researchers.
Handbook of Thermoset Plastics, Fourth Edition provides complete coverage of the chemical processes, manufacturing techniques and design properties of each polymer, along with its applications. This new edition has been expanded to include the latest developments in the field, with new chapters on radiation curing, biological adhesives, vitrimers, and 3D printing. This detailed handbook considers the practical implications of using thermoset plastics and the relationships between processing, properties and applications, as well as analyzing the strengths and weakness of different methods and applications. The aim of the book is to help the reader to make the right decision and take the correct action on the basis of informed analysis - avoiding the pitfalls the authors' experience has uncovered. In industry, the book supports engineers, scientists, manufacturers and R&D professionals working with plastics. The information included will also be of interest to researchers and advanced students in plastics engineering, polymer chemistry, adhesives and coatings.
Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles discusses the electrophoretic and diffusiophoretic motions of various colloidal entities, such as rigid particles, liquid droplets, gas bubbles, and porous particles, focusing on the motion-deterring double-layer polarization effect pertinent to highly charged particles, with the lowly charged ones serving as the limiting cases. Boundary effects such as those from a cylindrical pore, a solid plane, or an air-water interface are analyzed as well for the electrophoretic motion of the various particles considered. Dynamic electrophoresis is also explored and treated. The contents are suitable for researchers, graduate students, or senior college students with some basic background of colloid science and transport phenomena. As there is no closed-form analytical formula in general for the situation of highly charged particles, the results are presented with extensive figures and plots as well as tables under various electrokinetic situations of interest to facilitate the possible use of interested readers.
Advances in Catalysis, Volume 63 fills the gap between journal papers and textbooks across the diverse areas of catalysis research. For more than 60 years, this series has dedicated itself to record and present the latest progress in the field of catalysis, providing the scientific community with comprehensive and authoritative reviews. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry.
Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, Fourth Edition emphasizes the unifying role of thermodynamics in analyzing natural phenomena. This updated edition expands on the third edition by focusing on the general balance equations for coupled processes of physical, chemical and biological systems. Updates include stochastic approaches, self-organization criticality, ecosystems, mesoscopic thermodynamics, constructual law, quantum thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems. The book also emphasizes nonequilibrium thermodynamics tools, such as fluctuation theories, mesoscopic thermodynamic analysis, information theories, and quantum thermodynamics in describing and designing small scale systems.
Advances in Physical Organic Chemistry, Volume 52 in the series, is the definitive resource for authoritative reviews of work in physical organic chemistry. It aims to provide a valuable source of information that is ideal not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is a quantitative, molecular level understanding of phenomena across a diverse range of disciplines.
Advances in Catalysis, Volume 62, fills the gap between journal papers and textbooks across a diverse areas of catalysis research. For more than 60 years, this series has recorded and presented the latest progress in the field of catalysis, providing the scientific community with comprehensive and authoritative reviews. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry.
New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Genes Biochemistry and Applications consolidates the most widely used genetic methods available, bringing together the fields of biochemistry, biotechnology, and microbiology. The chapters outlined give clear and concise direction on both standard and applied microbial genetic improvements, presenting undergraduates, postgraduates, and researchers with the latest developments in microbial gene technology. In addition, the book describes the background and usefulness of each experiment in question. All chapters covered in the book are derived from current peer-reviewed literature as accepted by the international scientific community.
Annual Reports in Computational Chemistry, Volume 14, provides timely and critical reviews of important topics in computational chemistry. Topics covered in this series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
Can one correlate the philosophical musings of one of the most famous football coaches in history with the best ACS Student Member Chapters? Yes! The link is in the excellence. Award-winning Student Member Chapters-several leaders of which have been kind enough to write a chapter in this volume-all have caught excellence in one or more facets of what they do. Mio and Benvenuto began this journey to capture the best of Student Member Chapters back in 2015, when they asked some of the best and most active organizations' leadership to put into words what they did that puts them at the top. The editors realized there is not one, specific answer to such questions, but found a wealth of information in what their chapter authors reported. There are more voices in this wonderful chorus, voices of leaders who have great ideas and who have figured out ways to make the fascination of chemistry communicable to our students and the general public. This volume represents some excellent input as to what makes a chapter award-winning, and what keeps its excellence sustainable.
Nanoparticle Technology Handbook, Third Edition, is an updated and expanded authoritative reference providing both the theory behind nanoparticles and the practical applications of nanotechnology. This third edition features twenty new chapters, providing a reference much broader in scope than the previous edition. Over 140 experts in nanotechnology and/or particle technology contributed to this new edition. The book not only includes the theory behind nanoparticles, but also the practical applications of nanotechnology. It examines future possibilities and new innovations and contains important knowledge on nanoparticle characterization and the effect of nanoparticles on the environment and humans. Nanoparticle technology is a new and revolutionary technology, which is increasingly used in electronic devices and nanomaterials. It handles the preparation, processing, application and characterization of nanoparticles and has become the core of nanotechnology as an extension of conventional fine particle/powder technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields, including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, drug delivery system, biotechnology, etc., making use of the unique properties of nanoparticles, which are completely different from those of bulk materials.
Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications, Volume Six, Second Edition, presents the latest in a series that has been well received by the thermal analysis and calorimetry community. This volume covers recent advances in techniques and applications that complement the earlier volumes. There has been tremendous progress in the field in recent years, and this book puts together the most high-impact topics selected for their popularity by new editors Sergey Vyazovkin, Nobuyoshi Koga and Christoph Schick-all editors of Thermochimica Acta. Among the important new techniques covered are biomass conversion; sustainable polymers; polymer nanocompsoties; nonmetallic glasses; phase change materials; propellants and explosives; applications to pharmaceuticals; processes in ceramics, metals, and alloys; ionic liquids; fast-scanning calorimetry, and more.
Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, Volume 76, the latest release in the Advances in Quantum Chemistry series presents work and reviews of current work in quantum chemistry (molecules), but also includes scattering from atoms and solid state work of interest in physics. Topics covered in this release include the Present Status of Selected Configuration Interaction with Truncation Energy Error, Recent Developments in Asymptotic Expansions from Numerical Analysis and Approximation Theory, The kinetic energy Pauli enhancement factor and its role in determining the shell structure of atoms and molecules, Numerical Hartree-Fock and Many-Body Calculations for Diatomic Molecules, and more.
Electrochemistry of Dihydroxybenzene Compounds: Electrochemistry of Dihydroxybenzene Compounds focuses on developing a simple, highly sensitive and accurate voltammetric method to assess diphenols and other chemical compounds using composite-modified and glassy carbon-based electrodes. The determination of the trace levels of chemicals in products is a fundamental challenge in chemistry research, education and industry. This book presents significant approaches to this challenge, including the application of a wide range of electrodes under easily controlled conditions. Practical and concise, the book is an accessible quick reference for chemists and pharmacologists for assessing the electrochemistry of D-compounds.
Foams are ubiquitous in our daily lives. Their presence is highly desirable in certain foods, drinks and cosmetics, and they are essential in oil recovery and mineral extraction. In some industrial processes (such as the manufacture of glass, paper and wine) foams are an unwelcome by-product. Why do they appear? What controls the rate at which they disappear? Do they flow in the same way as ordinary liquids? All of these questions and more are addressed here, incorporating significant recent contributions to the field of foams. This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.
This book examines the history and fundamentals of the physical organic chemistry discipline. With the recent flowering of the organic synthesis field, physical organic chemistry has seemed to be shrinking or perhaps is just being absorbed into the toolkit of the synthetic chemist. The only Nobel Prize that can be reasonably attributed to a physical organic chemist is the 1994 award to George Olah, although Jeffrey I. Seeman has recently made a strong case that R. B. Woodward was actually a physical organic chemist in disguise (I). 2014 saw the awarding of the 50th James Flack Norris Award in Physical Organic Chemistry. James Flack Norris was an early physical organic chemist, before the discipline received its name. This book provides insight into the fundamentals of the field, and each chapter is devoted to a major discovery or to noted physical organic chemists, including Paul Schleyer, William Doering, and Glen A. Russell.
This book brings together the latest perspectives and ideas on teaching modern physical chemistry. It includes perspectives from experienced and well-known physical chemists, a thorough review of the education literature pertaining to physical chemistry, a thorough review of advances in undergraduate laboratory experiments from the past decade, in-depth descriptions of using computers to aid student learning, and innovative ideas for teaching the fundamentals of physical chemistry. This book will provide valuable insight and information to all teachers of physical chemistry.
This title in the authoritative Interface Science and Technology
Series presents the key features and applications of modified oxide
and phosphate surfaces.
Aggregation-induced emission (AIE) stands for an intriguing phenomenon in which a series of non-emissive molecules in solutions are induced to emit strongly in the aggregate or solid state. The concept of AIE was first coined by author Ben Zhong Tang in 2001, when he and his co-workers serendipitously discovered that 1-methyl-1,2,3,4,5-pentaphenylsilole was almost non-emissive in ethanol solution but became extremely bright in water-ethanol mixtures. Over the past 15 years, AIE has grown into a research field with high visibility and broad impact across both science and technology. Aggregation-Induced Emission: Materials and Applications summarizes the recent advances in AIE research, ranging from fundamentals, such as design, synthesis, and optical properties of AIE-active molecules, to mechanism studies supported by modeling and experimental investigations, and further to promising applications in the fields of energy, environment, and biology. The topics covered in Volume 2 include: AIE polymers; AIE-induced chirogenesis; Room-temperature phosphorescent AIE molecules; Liquid crystalline AIE molecules; AIE materials for energy devices; New chemo- and biosensors with AIE molecules; Cell structure and function imaging with AIE molecules; and AIE materials in drug delivery and therapy.
Cryogenics is the study of low temperature interactions -
temperatures well below those existing in the natural universe.
- Experiments described in technical detail
The role of the Maillard reaction in forming flavors from amino
acid and sugar precursors has been studied for many years. To
establish the basic chemistry of the reaction, researchers have
used model systems, often solutions of a single amino acid with a
single sugar. Despite the apparent simplicity of the system,
heating such a solution can generate tens if not hundreds of
compounds, which requires careful and time-consuming analysis to
identify and quantify each component.
In this second edition, Edwin Frankel has updated and extended his
now well-known book Lipid oxidation which has come to be regarded
as the standard work on the subject since the publication of the
first edition seven years previously. His main objective is to
develop the background necessary for a better understanding of what
factors should be considered, and what methods and lipid systems
should be employed, to achieve suitable evaluation and control of
lipid oxidation in complex foods and biological systems.
Chemical Thermodynamics: Principles and Applications presents a
thorough development of the principles of thermodynamics--an
old |
![]() ![]() You may like...
Hanks Family: Virginia, John and Mary…
Lincoln Financial Foundation
Hardcover
|