Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry
Volume 4 of Formulation Science and Technology is a survey of the applications of formulations in a variety of fields, based on the theories presented in Volumes 1 and 2. It offers in-depth explanations and a wealth of real-world examples for research scientists, universities, and industry practitioners in the fields of Agrochemicals, Paints and Coatings and Food Colloids.
This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.
This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers.
The present volume is a collection of review articles highlighting the fundamental advances made in this area by the internationally acclaimed research groups , most of them being pioneers themselves and coming together for the first time.
Photochromism is the reversible phototransformation of a chemical species between two forms having different absorption spectra. During the phototransformation not only the absorption spectra but also various physicochemical properties change, such as the refractive index, dielectric constant, oxidation/reduction potential, and geometrical structure. The property changes can be applied to photonic equipment such as erasable memory media, photo-optical switch components, and display devices. This book compiles the accomplishments of the research project titled "New Frontiers in Photochromism" supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The project focused not only on the above-mentioned classical subjects in photochromism, such as color changes, optical memory, and optical switches, but also on fundamental physicochemical studies and unprecedented application fields that have not yet been explored in photochromism. The latter topics include light-driven mechanical motion, photocontrol of surface wettability, metal deposition on solid materials, photocontrol of chiral properties, ultrafast decoloration dyes, and femtosecond laser experiments, among others.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
This book offers an overview of the recent studies and advances in environmental catalysis by nanomaterials, considering both the fundamental and the technological aspects. It offers contributions in different areas of environmental catalysis, including the catalytic and photocatalytic abatement of environmentally hazardous effluents from stationary or mobile sources, the valorization of waste and the production of sustainable energy. In other words, this monograph provides an overview of modern environmental and energy related applications with a particular emphasis to nano-sized catalytic materials. Recent concepts, experimental data and advanced theories are reported in this book to give evidence of the environmental and sustainable applications that can be found in the highly interdisciplinary field of catalysis.
This book presents 50 selected peer-reviewed reports from the 2016 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2016 (Surabaya, Indonesia, 19-22 July, 2016). The Proceedings are devoted to processing techniques, physics, mechanics, and applications of advanced materials. As such, they examine a wide spectrum of nanostructures, ferroelectric crystals, materials and composites, as well as other promising materials with special properties. They present nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques, and physical and mechanical studies of the structural and physical-mechanical properties of the materials discussed. Further, a broad range of original mathematical and numerical methods is applied to solve various technological, mechanical and physical problems, which are inte resting for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc., which show improved characteristics, defined by the developed materials and composites, opening new possibilities to study different physico-mechanical processes and phenomena.
This book presents a range of nanocatalysts, together with their primary environmental applications and use in chemical production processes. In addition, it describes the nanomaterials used for catalysts and details their performance. The book introduces readers to the fundamentals and applications of nanocatalysis, synthesis, characterization, modification and application. Further topics include: landfill organic pollutant photodegradation; magnetic photocatalysis; synergistic effects on hydrogenated TiO2; and photoinduced fusion of gold-semiconductor nanoparticles. A detailed explanation of the chemistry of nanostructures and the ability to control materials at the nano-scale rounds out the coverage. Given the central importance of research in nanotechnology and nanoscience for the development of new catalysts, the book offers a valuable source of information for researchers and academics alike. It will also benefit industrial engineers and production managers who wish to understand the environmental impact of nanocatalysts.
Since the first date of publication of this book in 1991, the
subject of phosphors and luminescence has assumed even more
importance in the overall scheme of technological development. Many
new types of displays have appeared which depend upon phosphors in
their operation. Some of these were pure conjecture in 1991 but are
a reality in 2004. Descriptions have been included of the newer (as
well as the older) types of displays in this edition along with an
annotated portrait of the phosphors used in each category. Many of
these new light sources promise to displace and make obsolete our
current light sources, such as incandescent lamps, fluorescent
lamps and the ubiquitous colour Cathode Ray Tube now used in TV and
computer monitors.
Volume 3 of Formulation Science and Technology is a survey of the applications of formulations in a variety of fields, based on the theories presented in Volumes 1 and 2. It offers in-depth explanations and a wealth of real-world examples for research scientists, universities, and industry practitioners in the fields of Pharmaceuticals, Cosmetics and Personal Care.
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.
This book explores the formation of colloidal gold-copper (AuCu) alloy nanoparticles and evaluate their application in heterogeneous catalysis. Metal alloys are extremely versatile materials that have been used since the Antiquity to improve the properties of commonly used metals, therefore the understanding of their properties has fostered the applications in areas such as photonics, sensors, clinical diagnostics, and especially in heterogeneous catalysis, which allows catalyst active sites to be modulated. In this book, readers will appreciate the fundamental aspects involved in the synthesis of AuCu nanoalloys, including real-time information about their atomic organization, electronic properties, as well a deeper understand about the behavior of AuCu supported nanoalloys under real catalytic conditions, providing interesting insights about the effect of the support on the nanoalloy stability. The results presented here open new horizons for using metal alloys in catalysis and also other areas where the metal-support interface may play a crucial role.
This volume deals with the chemistry of five-membered heterocycles containing at least two nitrogen atoms, or those with one, or more, nitrogens and one or more atoms from group 6 of the Peri tables. It includes chapters on: oxadiazoles and thiadiazoles; five-memebered heterocyclic compounds with four-heter-atoms in the ring; five-membered rings containing two nitrogen atoms; and five-membered heterocyclic compounds with three hetero-atoms in the ring.
High-temperature and high-pressure treatment of diamond is becoming an important technology to elaborate diamonds. This is the first book providing a comprehensive review of the properties of HPHT-treated diamonds, based on the analysis of published data and the work of the authors. The book gives a detailed analysis of the physics of transformation of internal structures of diamonds subjected to HPHT treatment and discusses how these transformations can be detected using methods of optical microscopy and spectroscopy. It also gives practical recommendations for the recognition of HPHT-treated diamonds. The book is written in a language and terms which can be understood by a broad audience of physicists, mineralogists and gemologists.
This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.
Introduction to Cake Filtration presents a comprehensive account of cake filtration studies including analyses of cake formation and growth, results of filtration experiments and data interpretation, measurements and determinations of filtercake properties, and incorporation of cake filtration theories to the analysis of several solid fluid separation processes. It aims at providing the necessary information to prepare people planning to undertake cake filtration work beyond the elementary level. In particular, it is hoped that this book will be helpful to individuals who are interested in cake filtration research and development quickly on track.
"EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. "presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. "EPR of Free Radicals in Solids I "focuses on the trends in experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques. It presents simulation techniques and software for CW and pulsed EPR as well as studies of quantum effects at low temperature. The chapters dealing with quantum chemistry methods for the theoretical interpretation of hyperfine coupling tensors and g-tensors have been much extended in this edition and a new chapter on the calculation of zero-field splitting tensors has been added. This new edition is a valuable resource to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemistry, chemical physics, materials science, biophysics, biochemistry and related fields. This new edition is a valuable resource to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemistry, chemical physics, materials science, biophysics, biochemistry and related fields."
This elegant book provides a student-friendly introduction to the subject of physical chemistry. It is concise and more compact than standard textbooks on the subject and it emphasises the two important concepts underpinning physical chemistry: quantum mechanics and the second law of thermodynamics. The principles are challenging to students because they both focus on uncertainty and probability. The book explains these fundamental concepts clearly and shows how they offer the key to understanding the wide range of chemical phenomena including atomic and molecular spectra, the structure and properties of solids, liquids and gases, chemical equilibrium, and the rates of chemical reactions.
This elegant book provides a student-friendly introduction to the subject of physical chemistry. It is concise and more compact than standard textbooks on the subject and it emphasises the two important concepts underpinning physical chemistry: quantum mechanics and the second law of thermodynamics. The principles are challenging to students because they both focus on uncertainty and probability. The book explains these fundamental concepts clearly and shows how they offer the key to understanding the wide range of chemical phenomena including atomic and molecular spectra, the structure and properties of solids, liquids and gases, chemical equilibrium, and the rates of chemical reactions.
This edited, multi-author book gathers selected, peer-reviewed contributions based on papers presented at the 23rd International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXIII), held in Mopani Camp, The Kruger National Park, South Africa, in September 2018. The content is primarily intended for scholars, researchers, and graduate students working at universities and scientific institutes who are interested in the structure, properties, dynamics, and spectroscopy of atoms, molecules, biological systems, and condensed matter.
Molecular Electronic Junction Transport: Some Pathways and Some Ideas, by Gemma C. Solomon, Carmen Herrmann and Mark A. Ratner Unimolecular Electronic Devices, by Robert M. Metzger and Daniell L. Mattern Active and Non-Active Large-Area Metal Molecules Metal Junctions, by Barbara Branchi, Felice C. Simeone and Maria A. Rampi Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface, by Chen Li, Artem Mishchenko and Thomas Wandlowski Tunneling Spectroscopy of Organic Monolayers and Single Molecules, by K. W. Hipps Single Molecule Logical Devices, by Nicolas Renaud, Mohamed Hliwa and Christian Joachim"
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines. |
You may like...
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,763
Discovery Miles 17 630
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,418
Discovery Miles 54 180
Metal-Catalyzed Asymmetric…
Montserrat Dieguez, Antonio Pizzano
Hardcover
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R3,983
Discovery Miles 39 830
Building and Maintaining Award-Winning…
Matthew J. Mio, Mark a. Benvenuto
Hardcover
R3,964
Discovery Miles 39 640
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,781
Discovery Miles 47 810
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
|