![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Mechanochemical Forces as a Synthetic Tool for Zero and One-Dimensional Titanium Oxide-Based Nano-photocatalysts" is available open access under a CC BY 4.0 License via link.springer.com.
Handbook of Modern Coating Technologies: Advanced Characterization Methods reviews advanced characterization methods of modern coating technologies. The topics in this volume consist of scanning vibrating electrode technique, spectroscopic ellipsometry, advances in X-ray diffraction, neutron reflectivity, micro- and nanoprobes, fluorescence technique, stress measurement methods in thin films, micropotentiometry, and localized corrosion studies.
This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers' understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.
This book focuses on theoretical and computational studies by the editor's group on the direct hydroxylation of methane, which is one of the most challenging subjects in catalyst chemistry. These studies of more than 20 years include gas-phase reactions by transition-metal oxide ions, enzymatic reactions by two types of methane monooxygenase (soluble and particulate MMO), catalytic reactions by metal-exchanged zeolites, and methane C-H activation by metal oxide surfaces. Catalyst chemistry has been mostly empirical and based on enormous experimental efforts. The subject of the title has been tackled using the orbital interaction and computations based on extended Huckel, DFT, and band structure calculations. The strength of the theoretical studies is in the synergy between theory and experiment. Therefore, the group has close contacts with experimentalists in physical chemistry, catalyst chemistry, bioinorganic chemistry, inorganic chemistry, and surface chemistry. This resulting book will be useful for the theoretical analysis and design of catalysts.
This book deals with functional materials that are in the
frontiers of current materials science and technology research,
development and manufacture. The first of its kind, it deals with
three classes of materials, (1) magnetic semiconductors, (2)
multiferroics, and (3) graphene. Because of the wide popularity of
these materials there isa strong need for a book about these
materials for graduate students, new researchers in science and
technology, as well as experienced scientists and technologists,
technology based companies and government institutes for science
and technology. Thebook will provide this broad audience with both
theoretical and experimental understanding to help in technological
advances in the development of devices and related new technologies
based on these very interesting and novel materials.
This user friendly introduction highlights the importance of electrochemistry and its applications to the modern world and the future. In contrast to other texts currently available, it emphasises understanding and avoids using many pages of complex equations. It also describes the diverse applications of electrochemistry rather than focusing on analytical chemistry alone. Although the book follows a similar structure to the first edition, the earlier chapters have been extensively up-dated and the later chapters are entirely new. The text is supported by a large number of figures which illustrate key points. The book starts by describing the essential electrochemical techniques before moving on to cover experimental problems and applications. To reflect the present interest in fuel cells and the environment, these have become the focus of the final chapters. A useful appendix contains problems with fully worked answers to test the reader's understanding.
This book summarizes the state of the art in the theoretical modeling of inorganic nanostructures. Extending the first edition, published in 2015, it presents applications to new nanostructured materials and theoretical explanations of recently discovered optical and thermodynamic properties of known nanomaterials. It discusses the developments in theoretical modeling of nanostructures, describing fundamental approaches such as symmetry analysis and applied calculation methods. The book also examines the theoretical aspects of many thermodynamic and the optical properties of nanostructures. The new edition includes additional descriptions of the theoretical modeling of nanostructures in novel materials such as the V2O5 binary oxide, ZnS, CdS, MoSSe and SnS2.
This thesis focuses on experimental studies on collective motion using swimming bacteria as model active-matter systems. It offers comprehensive reviews of state-of-the-art theories and experiments on collective motion from the viewpoint of nonequilibrium statistical physics. The author presents his experimental studies on two major classes of collective motion that had been well studied theoretically. Firstly, swimming filamentous bacteria in a thin fluid layer are shown to exhibit true, long-range orientational order and anomalously strong giant density fluctuations, which are considered universal and landmark signatures of collective motion by many numerical and theoretical works but have never been observed in real systems. Secondly, chaotic bacterial turbulence in a three-dimensional dense suspension without any long-range order as described in the first half is demonstrated to be capable of achieving antiferromagnetic vortex order by imposing a small number of constraints with appropriate periodicity. The experimental results presented significantly advance our fundamental understanding of order and fluctuations in collective motion of motile elements and their future applications.
This book systematically describes the design and synthesis of MOF-related materials and the electrochemical energy storage-related research in the field of batteries. It starts with an introduction to the synthesis of MOF-based materials and various MOF derivatives, such as MOF-derived porous carbon and MOF-derived metal nanoparticles. This is followed by highlighting the interesting examples for electrochemical applications, illustrating recent advances in battery, supercapacitor, and water splitting. This book is interesting and useful to a wide readership in the various fields of chemical science, materials science, and engineering.
Radioactivity: History, Science, Vital Uses and Ominous Peril, Third Edition provides an introduction to radioactivity, the building blocks of matter, the fundamental forces in nature, and the role of quarks and force carrier particles. This new edition adds material on the dichotomy between the peaceful applications of radioactivity and the threat to the continued existence of human life from the potential use of more powerful and sophisticated nuclear weapons. The book includes a current review of studies on the probability of nuclear war and treaties, nonproliferation and disarmament, along with historical insights into the achievements of over 100 pioneers and Nobel Laureates. Through multiple worked examples, the book answers many questions for the student, teacher and practitioner as to the origins, properties and practical applications of radioactivity in fields such as medicine, biological and environmental research, industry, safe nuclear power free of greenhouse gases and nuclear fusion. Ratings and Reviews of Previous Editions: CHOICE Magazine, July 2008: "This work provides an overview of the many interesting aspects of the science of radioactive decays, including in-depth chapters that offer reminiscences on the history and important personalities of the field...This book can be useful as supplemental reading or as a reference when developing course material for nuclear physics, nuclear engineering, or health physics lectures. Special attention has been given to a chapter on the role radioactivity plays in everyday life applications...Generally the book is well produced and will be a valuable resource...Many lectures can be lightened up by including material from this work. Summing up: RECOMMENDED. Upper division undergraduates through professionals; technical program students." U. Greife, Colorado School of Mines, USA "I found the biographical accounts of the various stalwarts of Physics inspirational. Most of them, if not all, had to overcome economic hardships or p[ersonal tragedies or had to do their groundbreaking work in the face of tyranny and war. The biographies also highlighted the high standards of moral convictions that the scientists had as they realized the grave implications of some of their work and the potential threats to humanity. This ought to inspire and motivate young men and women aspiring to be physicists. Even people who have been in the field for a while should find your book re-energizing. It certainly had that effect on me." -- Dr. Ramkumar Venkataraman, Canberra Industries, Inc., Meriden, CT, USA Winner of an Honorable Mention in the 2017 PROSE Awards in the category of Chemistry and Physics (https://proseawards.com/winners/2017-award-winners/ )
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Nanocomposite Structures and Dispersions deals with the preparation of gelled, branched and crosslinked nanostructured polymers in the solution free radical polymerization and controlled/living radical polymerization and polymer and composite nanoparticles and nanostructures in disperse systems, the kinetics of direct and inverse disperse polymerizations (microemulsion, miniemulsion, emulsion, dispersion and suspension polymerization), the bottom-up approach building of functionalized nanoparticles, modelling of radical microemulsion polymerization, the characterization of traditional and non-traditional polymer dispersions, the collective properties of nanomaterials and their (bio)applications. This book is designed to bridge that gap and offers several unique features. First, it is written as an introduction to and survey of nanomaterials with a careful balance between basics and advanced topics. Thus, it is suitable for both beginners and experts, including graduate and upper-level undergraduate students. Second, it strives to balance the colloidal aspects of nanomaterials with physical principles. Third, the book highlights nanomaterial based architectures including composite or hybrid conjugates rather than only isolated nanoparticles. A number of ligands have been utilized to biodecorate the polymer and composite nanocarriers. Finally, the book provides an in depth discussion of important examples of reaction mechanisms of bottom-up building of functionalized nanoparticles, or potential applications of nanoarchitectures, ranging from physical to chemical and biological systems.
Proteins are exposed to various interfacial stresses during drug product development. They are subjected to air-liquid, liquid-solid, and, sometimes, liquid-liquid interfaces throughout the development cycle-from manufacturing of drug substances to storage and drug delivery. Unlike small molecule drugs, proteins are typically unstable at interfaces where, on adsorption, they often denature and form aggregates, resulting in loss of efficacy and potential immunogenicity. This book covers both the fundamental aspects of proteins at interfaces and the quantification of interfacial behaviors of proteins. Importantly, this book introduces the industrial aspects of protein instabilities at interfaces, including the processes that introduce new interfaces, evaluation of interfacial instabilities, and mitigation strategies. The audience that this book targets encompasses scientists in the pharmaceutical and biotech industry, as well as faculty and students from academia in the surface science, pharmaceutical, and medicinal chemistry areas.
This book presents original results on the use of cassava wastewater as a substitute for potable water in ceramic formulations. It evaluates the physical and mechanical properties as well as the microstructure of the materials produced, comparing the products obtained from the incorporating effluent with the conventional materials used in the construction industry.
The book summarizes the results of the experimental studies of phase relations in the chemical systems relevant to Earth, carried out by the author in a time period of over 20 years between 1979 and 2001. It is based on 1000 piston-cylinder experiments at pressures up to 4 GPa, and close to 700 experiments carried out with a multi-anvil apparatus at pressures up to 24 GPA. This is the largest published collection of calculated phase diagrams for the chemical systems relevant to Earth. This is also the first time that the phase relations at the relatively low pressures of the lithospheric mantle, mainly applicable to the experimental thermobarometry of metamorphic rocks and mantle xenoliths, are seamlessly integrated with the phase relations of the sublithospheric upper mantle and the uppermost lower mantle, primarily applicable to inclusions in diamond and schocked meteorites. "Tibor Gasparik has devoted his career to determining the high-pressure, high-temperature phase relations of the geologically important Sodium-Calcium-Magnesium-Aluminium-Silicon (NCMAS) oxide system. This book is his opus magnum, summarizing more than 1700 experiments in over 120 figures. ... I have found Phase Diagrams for Geoscientists to be a useful first port-of-call for finding the P-T stability fields ... and I can recommend the book as a reference for geoscientists requiring an overview of the stable phase assemblages in the top 700 km of the Earth." (David Dobson, Geological Magazine, Vol. 142 (2), 2005)
In this book, the author demonstrates that double-helix formation and fibril film formation occur on solid surfaces as a result of the catalytic effect of the liquid-solid interface of the newly synthesized helicene oligomer. In addition, he shows that the double helix produced at the liquid-solid interface can be diffused into a solution to form a self-assembling material by means of mechanical stirring. Both types of formation are new chemical phenomena unique to liquid-solid interfaces not found in solutions. Detailed results are provided for new chemical reactions at liquid-solid interfaces, and gleaned from experiments performed using synthetic organic molecules. The book offers a useful reference guide to elucidating reaction mechanisms for researchers whose work involves chemical phenomena at a liquid-solid interface.
Fossil fuels comprise the accumulation of prehistoric biomass that was energised by sunlight, and formed by earth system dynamics. Fossil fuels can be conceptualized as stored energy stocks that can be readily converted to power flows, on demand. A transition from a reliance on stored energy stocks, to renewable energy flows, will require a replication of energy storage by technological devices and energy conversion methods. Most analyses of energy storage focus solely on the economic-technical properties of storage within incumbent energy systems. This book broadens the scope of the study of storage by placing it within a broader, historical, biophysical framework. The role and value of storage is examined from first principles, and framed within the contemporary context of electrical grids and markets. The energy-economic cost of electrical storage may be critical to the efficacy of high penetration renewable scenarios, and understanding the costs and benefits of storage is needed for a proper assessment of storage in energy transition studies. This book provides a starting point for engineers, scientists and energy analysts for exploring the role of storage in energy transition studies, and for gaining an appreciation of the biophysical constraints of storage.
This book discusses systematically the theoretical research and the applications of electrochemical oxygen reduction. Oxygen reduction reaction is a common issue in electrochemistry, but is also an important process involved in the field of energy, cryogenic fuel cells, metal-air cells, oxygen sensors and hydrogen peroxide preparation. This book is divided into 6 chapters; it starts with a description of dynamic mechanisms, followed by a detailed introduction on the related experimental methods and related catalyst preparation technology. By providing the basic methods and testing techniques, and by demonstrating their applications, it helps readers gain a better understanding of oxygen reduction reactions, making it a valuable resource for the industrialization of scientific research achievements. Accordingly, the book appeals to a broad readership, particularly graduate students, those working at universities and research organizations, and industrial researchers.
The revised edition gives a comprehensive mathematical and physical presentation of fluid flows in non-classical models of convection - relevant in nature as well as in industry. After the concise coverage of fluid dynamics and heat transfer theory it discusses recent research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.
Quantum Boundaries of Life, Volume 82 in the Advances in Quantum Chemistry series, presents current topics in this rapidly developing field that have emerged at the cross section of mathematics, physics, chemistry and biology. Topics covered include Quantum Considerations of Neural Memory, Functional Neural Electron Transport, Plasmon-polariton mechanism of the saltatory conduction in myelinated axons, Quantum Field Theory Formulation of Brain Dynamics: Nonequilibrium, Multi Field Theory Formulation of Brain Dynamics, Quantum Protein Folding, Classical-Quantum Interplay in Living Neural Tissue Function, Quantum Effects in Life Dynamics, Quantum transport and utilization of free energy in protein a-helices, and much more. The book's message is simple. Mystics prefer to put consciousness in the cosmos to avoid Darwinism. If the seat of consciousness is found to evolve within all animals, then we have a Darwinian understanding not only of the origin of life and species according to natural selection but also concerning consciousness and, in particular, life being quantum Darwinian.
This book provides a unique and comprehensive overview of the latest advances, challenges and accomplishments in the rapidly growing field of theoretical and computational materials science. Today, an increasing number of industrial communities rely more and more on advanced atomic-scale methods to obtain reliable predictions of materials properties, complement qualitative experimental analyses and circumvent experimental difficulties. The book examines some of the latest and most advanced simulation techniques currently available, as well as up-to-date theoretical approaches adopted by a selected panel of twelve international research teams. It covers a wide range of novel and advanced materials, exploring their structural, elastic, optical, mass and electronic transport properties. The cutting-edge techniques presented appeal to physicists, applied mathematicians and engineers interested in advanced simulation methods in materials science. The book can also be used as additional literature for undergraduate and postgraduate students with majors in physics, chemistry, applied mathematics and engineering.
This book introduces the new concept of "nanozyme", which refers to nanomaterials with intrinsic enzymatic activity, rather than nanomaterials with biological enzymes incorporated on the surface. The book presents the cutting-edge advances in nanozyme, with emphasis on state-of-the-art applications in many important fields, such as in the biomedical fields and for environmental protection. The nanozyme is a totally new type of artificial enzyme and exhibits huge advantages over natural enzymes, including greater stability, low cost, versatility, simplicity, and suitability for industry. It is of interest to university researchers, R&D engineers, as well as graduate students in nanoscience and technology, and biology wishing to learn the core principles, methods, and the corresponding applications of "nanozyme". |
![]() ![]() You may like...
ABC's in the Kitchen - A Cookbook for…
Megan E Barney, Catherine E Montenegro
Hardcover
R714
Discovery Miles 7 140
Cooking Up a Storm - The Teen Survival…
Sam Stern, Susan Stern
Paperback
![]()
|