Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry
Bridging the gap between the multitude of advanced research articles and the knowledge newcomers to the field are looking for, this is a timely and comprehensive monograph covering the interdisciplinary topic of intramolecular charge transfer (ICT). The book not only covers the fundamentals and physico-chemical background of the ICT process, but also places a special emphasis on the latest experimental and theoretical studies that have been undertaken to understand this process and discusses key technological applications. After outlining the discovery of ICT molecules, the authors go on to discuss several important substance classes. They present the latest techniques for studying the underlying processes and show the interplay between charge transfer and the surrounding medium. Examples taken from nonlinear optics, viscosity and polarity sensors, and organic electronics testify to the vast range of applications. The result is a unique information source for experimentalists as well as theoreticians, from postgraduate students to researchers.
What Arieh Warshel and fellow 2013 Nobel laureates Michael Levitt and Martin Karplus achieved - beginning in the late 1960s and early 1970s when computers were still very primitive - was the creation of methods and programs that describe the action of biological molecules by 'multiscale models'. In this book, Warshel describes this fascinating, half-century journey to the apex of science.From Kibbutz Fishponds to The Nobel Prize is as much an autobiography as an advocacy for the emerging field of computational science. We follow Warshel through pivotal moments of his life, from his formative years in war-torn Israel in an idealistic kibbutz that did not encourage academic education; to his time in the army and his move to the Technion where he started in his obsession of understanding the catalytic power of enzymes; to his eventual scientific career which took him to the Weizmann Institute, Harvard University, Medical Research Council, and finally University of Southern California. We read about his unique contributions to the elucidation of the molecular basis of biological functions, which are combined with instructive stories about his persistence in advancing ideas that contradict the current dogma, and the nature of his scientific struggle for recognition, both personal and for the field to which he devoted his life. This is, in so many ways, more than just a memoir: it is a profoundly inspirational tale of one man's odyssey from a kibbutz that did not allow him to go to a university to the pinnacle of the scientific world, highlighting that the correct mixture of persistence, talent and luck can lead to a Nobel Prize.
Metal-Catalyzed Asymmetric Hydrogenation, Volume 68 in the Advances in Catalysis series, fills the gap between journal papers and textbooks across diverse areas of catalysis research. For more than 60 years, this series has recorded and presented the latest progress in the field of catalysis, giving the scientific community comprehensive and authoritative reviews. Chapters in this new release include Asymmetric hydrogenation of functionalized olefins, Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups, Asymmetric hydrogenation of imines, Asymmetric hydrogenation of ketones, Asymmetric hydrogenation in industry, and Computational insights into metal-catalyzed asymmetric hydrogenation. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry, with this release focusing on solid acids, surface acidity and heterogeneous acid catalysis.
The fragment molecular orbital (FMO) method is a fast linear-scaling quantum-mechanical method employed by chemists and physicists all over the world. It provides a wealth of properties of fragments from quantum-chemical calculations, a bottomless treasure pit for data mining and machine learning. However, there is no user-friendly description of its usage in the widely employed quantum-chemical open-source software GAMESS, nor is there any book covering the usage of GAMESS in general. This leaves very many interested users to their own devices to get through a variety of problems with very cryptic descriptions of keywords in the program manual and no guide whatsoever as to what options should be set for particular scientific tasks. This book is the panacea to many frustrations.The main focus of the book is to build a solid bridge connecting FMO users to GAMESS, by giving a helpful introduction of various FMO methods as needed for particular problems found in computational chemistry, and describing in detail how to do these simulations and understand the results from the output of the program. The book also covers parallelization strategies for attaining high parallel efficiency in massively parallel computations, and provides means to analyze performance and design a solution for overcoming performance bottlenecks. A special section is devoted to dealing with problems in executing GAMESS, arising from computational environment and user errors. Finally, 14 carefully selected types of applications are discussed in detail, describing the input keywords and explaining where to find the main results in the text-based output.
The UK Catalysis Hub is a consortium of universities working together on fundamental and applied research to find out how catalysts work and to improve their effectiveness. The contribution of catalysis to manufacturing contributes to almost 40% of global GDP, making development and innovation within the field integral to industry.Modern Developments in Catalysis, Volume 2 provides a review and update of current research and practice on catalysis. Topics range from the treatment of water using novel techniques for carbon neutrality, cutting-edge techniques using intense radiation including Operando Synchrotron Infrared Microspectroscopy to innovation in homogeneous catalysis, heterogeneous catalysis and biocatalysis. Edited by leaders of the UK Hub, this book provides insight into one of the most important areas of modern chemistry - it represents a unique learning opportunity for students and professionals studying and working towards speeding up, improving and increasing the rate of catalytic reactions in science and industry.
Chemical modelling covers a wide range of disciplines, and this book is the first stop for any chemist, materials scientist, biochemist, or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, considerations towards rigorous foundations for the natural-orbital representation of molecular electronic transitions, quantum and classical embedding schemes for optical properties, machine learning for excited states, ultrafast and wave function-based electron dynamics, and attosecond chemistry.
Written chemical formulas, such as C2H6O, can tell us the constituent atoms a molecule contains but they cannot differentiate between the possible geometrical arrangements (isomers) of these models. Yet the chemical properties of different isomers can vary hugely. Therefore, to understand the world of chemistry we need to ask what kind of isomers can be produced from a given atomic composition, how are isomers converted into each other, how do they decompose into smaller pieces, and how can they be made from smaller pieces? The answers to these questions will help us to discover new chemistry and new molecules. A potential energy surface (PES) describes a system, such as a molecule, based on geometrical parameters. The mathematical properties of the PES can be used to calculate probable isomer structures as well as how they are formed and how they might behave. Exploration on Quantum Chemical Potential Energy Surfaces focuses on the PES search based on quantum chemical calculations. It describes how to explore the chemical world on PES, discusses fundamental methods and specific techniques developed for efficient exploration on PES, and demonstrates several examples of the PES search for chemical structures and reaction routes.
Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal.
Filling a gap in the current literature, this comprehensive
reference presents all important catalyst classes, including metal
oxides, polyoxometalates, and zeolites. Readers will find here
everything they need to know -- from structure design to
characterization, and from immobilization to industrial
processes.
Aerosol science and engineering is a vibrant field of particle technology and chemical reaction engineering. The book presents a timely account of this interdisciplinary topic and its various application areas. It will be of interest to scientists or engineers active in aerosol physics, aerosol or colloid chemistry, atmospheric processes, and chemical, mechanical, environmental and/or materials engineering.
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight microkinetic modeling, encapsulated metals for confined catalysis, recent advances on the direct decomposition of NOx and heteropolyacid catalysts. There is also a chapter reviewing methods for estimating adsorption energies on catalytic surfaces, which will provide information from both fundamental and technological points of view. Appealing broadly to researchers in academia and industry, the detailed chapters bridge the gap from academic studies in the laboratory to practical applications in industry, not only for the catalysis field, but also for environmental protection. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
Corrosion is a high-cost and potentially hazardous issue in numerous industries. The potential use of diverse carbon nanoallotropes in corrosion protection, prevention and control is a subject of rising attention. This book covers the current advancements of carbon nanoallotropes in metal corrosion management, including the usage of nanostructure materials to produce high-performance corrosion inhibitors and corrosion-resistant coatings.
|
You may like...
Redox Chemistry - From Molecules to…
Olivier Fontaine
Hardcover
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,773
Discovery Miles 57 730
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,794
Discovery Miles 47 940
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R3,983
Discovery Miles 39 830
|