![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This volume explores how ionic liquids are used in different areas of biotechnology. It also provides insights on the interaction of ionic liquids with biomolecules and biomaterials. Ionic liquids have become essential players in the fields of synthesis, catalysis, extraction and electrochemistry, and their unique properties have opened a wide range of applications in biotechnology. Readers will discover diverse examples of the application of ionic liquids as solvents for biomaterials extraction and pretreatment, in enzymatic and whole cell catalysed reaction, and as activation agents for biocatalysis. Particular attention is given to the biologically functionalized ionic liquids employed in medical and pharmaceutical applications. Although ionic liquids are considered "green solvents", the contributing authors will also explore their environmental impact when applied to biotechnology. Chemical, biological and medical scientists interested in ionic liquids and biotechnology will find this work instructive and informative.
This book provides a modern and easy-to-understand introduction to the chemical equilibria in solutions. It focuses on aqueous solutions, but also addresses non-aqueous solutions, covering acid-base, complex, precipitation and redox equilibria. The theory behind these and the resulting knowledge for experimental work build the foundations of analytical chemistry. They are also of essential importance for all solution reactions in environmental chemistry, biochemistry and geochemistry as well as pharmaceutics and medicine. Each chapter and section highlights the main aspects, providing examples in separate boxes. Questions and answers are included to facilitate understanding, while the numerous literature references allow students to easily expand their studies.
Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.
This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.
This book is a concise introductory guide to understanding the foundations of electrochemistry. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the author explains in simple language an otherwise complex subject that can be difficult to master for most. It provides readers with an understanding of important electrochemical processes and practical industrial applications, such as electrolysis processes, metal electrowinning, corrosion and analytical applications, and galvanic cells such as batteries, fuel cells, and supercapacitors. This powerful tutorial is a great resource for students, engineers, technicians, and other busy professionals who need to quickly acquire a solid understanding of the science of electrochemistry.
This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Moebius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.
This book investigates a wide range of phase equilibrium modelling and calculation problems for compositional thermal simulation. Further, it provides an effective solution for multiphase isenthalpic flash under the classical framework, and it also presents a new flash calculation framework for multiphase systems, which can handle phase equilibrium and chemical reaction equilibrium simultaneously. The framework is particularly suitable for systems with many phases and reactions. In this book, the author shows how the new framework can be generalised for different flash specifications and different independent variables. Since the flash calculation is at the heart of various types of compositional simulation, the findings presented here will promote the combination of phase equilibrium and chemical equilibrium calculations in future simulators, aiming at improving their robustness and efficiency.
Separation of Isotopes of Biogenic Elements provides a detailed
overview of this area of research covering all aspects from the
value of isotope effects to their practical use (equilibrium
single-stage isotope effect - kinetics and mass transfer -
multiplication of the single-stage isotope separation factor -
technological peculiarity of processes) with the purpose of
extraction from the natural mixture of the enriched and highly
concentrated isotopes. In contrast to traditional books on the
theory of isotope separation, the theoretical part of the book
describes separation in two-phase processes in counter-flow
columns. The experimental part of the book presents systematic
analysis of specialists in the field of isotope separation in
counter-flow columns. This book will be of interest to scientists,
engineers and technical workers engaged in isotope separation
processes and isotope application in nuclear physics, medicine,
agro-chemistry, biology and other areas. This book may also be used
in teaching theory and practical aspects in courses on physical
chemistry and Isotope separation of light elements by
physicochemical methods.
This book presents the applications of ion-exchange materials in the chemical and food industries. It includes topics related to the application of ion exchange chromatography in water softening, purification and separation of chemicals, separation and purification of food products and catalysis. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists.
This book discusses several new, near-net-shape techniques for fabricating highly reliable, high-performance, complex ceramic parts. In the context of materials design, the creation of high-performance ceramic products of desired shapes has led to the need for new ceramic forming processes. The near-net-shape techniques combine both injection-molding and colloidal-forming processes. Reviewing and summarizing the research and latest advances, the book is divided into 6 parts: (1) the basic theory, development, and application of the colloidal injection molding of ceramics; (2) the tape casting technology; (3) the reliability of the product; (4) the colloidal injection molding of Si3N4 and SiC; (5) low-toxicity systems; and (6) the novel in-situ coagulation casting of ceramic suspensions via controlled release of high-valence counter ions and dispersant removal. It is intended for researchers and graduates in materials science and engineering.
The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad (R).
This book presents the optimal auxiliary functions method and applies it to various engineering problems and in particular in boundary layer problems. The cornerstone of the presented procedure is the concept of "optimal auxiliary functions" which are needed to obtain accurate results in an efficient way. Unlike other known analytic approaches, this procedure provides us with a simple but rigorous way to control and adjust the convergence of the solutions of nonlinear dynamical systems. The optimal auxiliary functions are depending on some convergence-control parameters whose optimal values are rigorously determined from mathematical point of view. The capital strength of our procedure is its fast convergence, since after only one iteration, we obtain very accurate analytical solutions which are very easy to be verified. Moreover, no simplifying hypothesis or assumptions are made. The book contains a large amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and many more. The book is a continuation of our previous books "Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches", Springer-2011 and "The Optimal Homotopy Asymptotic Method. Engineering Applications", Springer-2015.
"Advances in Quantum Chemistry" presents surveys of current
developments in this rapidly developing field. With invited reviews
written by leading international researchers, each presenting new
results, it provides a single vehicle for following progress in
this interdisciplinary area.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The authors provide new insights into the theoretical and applied aspects of metal electrodeposition. The theory largely focuses on the electrochemistry of metals. Details on the practice discuss the selection and use of metal coatings, the technology of deposition of metals and alloys, including individual peculiarities, properties and structure of coatings, control and investigations. This book aims to acquaint advanced students and researchers with recent advances in electrodeposition while also being an excellent reference for the practical electrodeposition of metals and alloys.
This book originated out of a desire to combine topics on vibrational absorption, Raman scattering, vibrational circular dichroism (VCD) and Raman optical activity (VROA) into one source. The theoretical details of these processes are presented in ten different chapters. Using dispersive and Fourier transform techniques, the instrumentation involved in these spectral measurements are given in three chapters. Major emphasis is placed on the newer techniques, i.e. VCD and VROA, with the conventional vibrational absorption and vibrational Raman scattering methods incorporated as natural parts of the newer methods. Features of this book: Comprehensive coverage of vibrational circular dichroism and vibrational Raman optical activity. Coverage of theoretical and instrumental details. A comprehensive survey of VCD and VROA applications is included, so that the reader can get an overview of theory, instrumentation and applications in one source. The topics covered are of an advanced level, which makes this
book invaluable for graduate students and practising scientists in
vibrational spectroscopy.
This book offers a comprehensive overview of thermodynamics. It is divided into four parts, the first of which equips readers with a deeper understanding of the fundamental principles of thermodynamics of equilibrium states and of their evolution. The second part applies these principles to a series of generalized situations, presenting applications that are of interest both in their own right and in terms of demonstrating how thermodynamics, as a theory of principle, relates to different fields. In turn, the third part focuses on non-equilibrium configurations and the dynamics of natural processes. It discusses both discontinuous and continuous systems, highlighting the interference among non-equilibrium processes, and the nature of stationary states and of fluctuations in isolated systems. Lastly, part four introduces the relation between physics and information theory, which constitutes a new frontier in fundamental research. The book includes step-by-step exercises, with solutions, to help readers to gain a fuller understanding of the subjects, and also features a series of appendices providing useful mathematical formulae. Reflecting the content of modern university courses on thermodynamics, it is a valuable resource for students and young scientists in the fields of physics, chemistry, and engineering.
This thesis offers a unique guide to the development and application of ultrasensitive optical microscopy based on light scattering. Divided into eight chapters, it covers an impressive range of scientific fields, from basic optical physics to molecular biology and synthetic organic chemistry. Especially the detailed information provided on how to design, build and implement an interferometric scattering microscope, as well as the descriptions of all instrumentation, hardware interfacing and image processing necessary to achieve the highest levels of performance, will be of interest to researchers now entering the field.
This book presents the fundamentals and the state of the art of the photophysics of molecular oxygen. The author examines optical transitions between the lowest-lying electronic states in molecular oxygen and how these transitions respond to perturbation, either from an organic molecule or from the plasmon field of a metal nanoparticle. We live on a planet filled with light and oxygen. The interaction between these two components forms the basis of excited state chemistry spanning the fields of synthetic organic chemistry, materials chemistry, molecular biology, and photodynamic treatment of cancer. Still, the fundamental ways in which oxygen is affected by light is an active subject of research and is continually being developed and rationalized. In this book, readers will learn that singlet oxygen, the excited state of oxygen that exhibits unique chemical reactivity, can be selectively made via direct optical excitation of oxygen in a sensitizer-free system. Readers will also discover that this approach can perturb living cells differently depending on the singlet oxygen "dose".
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.
THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND
RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT
MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY.
TUTORIALS AND REVIEWS COVER
This thesis uses a systems-level approach to study the cellular metabolism, unveiling new mechanisms and responses that were impossible to reach with traditional reductionists procedures. The results reported here have a potential application in areas like metabolic engineering and disease treatment. They could also be used in determining the accuracy of the gene essentiality of new genome-scale reconstructions. Different methods and techniques, within the contexts of Systems Biology and the field known as Complex Networks Analysis have been applied in this work to show different features of the robustness of metabolic networks. The specific issues addressed here range from pure topological aspec ts of the networks themselves to the balance of biochemical fluxes. |
![]() ![]() You may like...
Aquatic Oligochaete Biology, v. 6…
K.A. Coates, Trefor B. Reynoldson, …
Hardcover
R2,674
Discovery Miles 26 740
12 Rules For Life - An Antidote To Chaos
Jordan B. Peterson
Paperback
![]()
Mites - Ecology, Evolution and Behaviour
David Walter, Heather Coreen Proctor
Hardcover
R4,557
Discovery Miles 45 570
|