![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
Biopolymer Science for Proteins and Peptides introduces all aspects of natural polymers based on structural proteins and peptides, presenting synthesis, structure, properties, proteins, materials design, and applications. The book begins by presenting the core concepts of polypeptide and protein materials, before discussing synthesis and structure in detail. The next part of the book describes physical properties, biological properties, and issues surrounding stability. Subsequent chapters offer in-depth coverage of both natural and structural protein sources, including collagen, silk, elastin, resilin, keratin, foot protein, and reflectin, and the materials that can be designed from them, such as films, fibers, textiles, microparticles, sponges and scaffolds, nanomaterials, blends, and composites. These materials are also analyzed against the available synthetic polymers. Finally, the text explores current applications and potential future developments. This is an essential resource for researchers and advanced students across a range of disciplines, including biopolymers, structural proteins, polymer science, materials science, biomaterials, biology, biotechnology, chemistry, engineering, and pharmaceutical science. In an industry setting, this is of great interest to scientists and R&D professionals working in industries with an interest in bio-based polymers for advanced applications.
Thermal Analysis and Thermodynamic Properties of Solids, Second Edition covers foundational principles and recent updates in the field, presenting an authoritative overview of theoretical knowledge and practical applications across several fields. Since the first edition of this book was published, large developments have occurred in the theoretical understanding of-and subsequent ability to assess and apply-principles of thermal analysis. Drawing on the knowledge of its expert author, this second edition provides fascinating insight for both new and experienced students, researchers, and industry professionals whose work is influenced or impacted by thermo analysis principles and tools. Part 1 provides a detailed introduction and guide to theoretical aspects of thermal analysis and the related impact of thermodynamics. Key terminology and concepts, the fundamentals of thermophysical examinations, thermostatics, equilibrium background, thermotics, reaction kinetics and models, thermokinetics and the exploitation of fractals are all discussed. Part 2 then goes on to discuss practical applications of this theoretical information to topics such as crystallization kinetics and glass states, thermodynamics in superconductor models, and climate change.
Micro and Nanolignin in Aqueous Dispersions and Polymers: Interactions, Properties, and Applications presents the very latest research on lignin biorefinery treatments, production, chemistry, and refining, exploring a range of innovative applications of lignin and lignin-based composites at both the micro and the nanoscale. The book begins by presenting the latest developments in extraction methods and properties, with topics including methods for value-added microlignin, color characteristics, refining and functionalization, depolymerization for phenolic monomer production, and production of sulphur-free lignin nanoparticles. This is followed by in-depth sections focusing on the preparation of lignin for advanced applications at the microscale, then at the nanoscale, covering a range of areas such as construction, fiber manufacturing, food packaging, biomedicine, wood preservation, wastewater treatment, and agriculture. This valuable resource enables the reader to identify the high added value of a biomass residue and supports possible development and use for mass and niche high impact application sectors. This information is of interest to researchers, scientists, and advanced students, across bio-based polymers and bio-composites, polymer science and engineering, nanomaterials, chemistry, sustainable materials, materials science, and chemical engineering. Moreover, it is also addressed to the professionals that as well as those in an R&D industrial setting to are looking on ideas and perspectives on how to utilize bio-based materials in advanced industrial applications.
Annual Reports in Computational Chemistry, Volume 17 provides timely and critical reviews on important topics in computational chemistry. Topics covered in the series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 60 presents the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics.
Synthetic Engineering Materials and Nanotechnology covers the latest research and developments of synthetic processes, materials, applications and technologies. In addition, innovations in synthetic engineering materials techniques are analyzed. Each chapter addresses key concepts, properties and applications of important categories of synthetic materials, including metals alloys, polymers, composites, rubbers, oils and foams. Advances in nanomaterials produced by synthetic engineering methods are also considered, including ceramic, carbon, metal oxide, composite, and membrane-derived nanomaterials. The primary synthetic engineering materials techniques covered include thermo-mechanical, chemical, physiochemical, electrochemical, bottom-up, hybrid and biological methods. This book is suitable for early career researchers in academia and R&D in areas such as materials science and engineering, mechanical engineering and chemical engineering.
Colloidal Foundations of Nanoscience, Second Edition explores the theory and concepts of colloid chemistry and its applications to nanoscience and nanotechnology. The book provides the essential conceptual and methodological tools to approach nano-research issues. The authors' expertise in colloid science will contribute to the understanding of basic issues involved in research. Each chapter covers a classical subject of colloid science in simple and straightforward terms, addressing its relevance to nanoscience before introducing case studies. Sections cover colloids rheology, electrokinetics, nanoparticle tracking analysis (NTA), bio-layer interferometry, and the treatment of inter-particle interactions and colloidal stability.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field, one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. The book features detailed reviews written by leading international researchers. In this volume, the readers are presented with an exciting combination of themes.
Fundamentals and Recent Advances in Nanocomposites Based on Polymers and Nanocellulose brings together the latest research in cellulose-based nanocomposites, covering fundamentals, processing, properties, performance, applications, and the state of the art. The book begins by explaining the fundamentals of cellulose and cellulose-based nanocomposites, including sources, extraction, types, classification, linkages, model structure, model compounds, and characterization techniques. The second part of the book covers the incorporation of cellulose fillers to improve the properties or characteristics of nanocomposites, organized by composite category, including in aerogels, thermoplastic composites, thermoset composites, bioplastic composites, carbon nanofibers, rubber composites, carbon fibers, and foaming materials. Throughout these chapters, there is an emphasis on the latest innovations and application potential. Finally, applications are explored in more detail, notably focusing on the utilization of nanocellulose in biodegradable composites for biomedical applications, along with other important industrial application areas. This book is of great interest to researchers, scientists, and advanced students working with bio-based materials, and across polymer science, nanomaterials, composite materials, plastics engineering, chemical engineering, materials science and engineering, as well as R&D professionals, engineers, and industrialists interested in the development of bio-based materials for advanced applications or material commercialization.
The Crystalline States of Organic Compounds is a broad survey of the techniques by which molecular crystals are investigated, modeled, and applied, starting with the fundamentals of intra- and intermolecular bonding supplemented by a concise tutorial on present-day diffraction methods, then proceeding to an examination of crystallographic databases with their statistics and of such fundamental and fast-growing topics as intermolecular potentials, polymorphism, co-crystallization, and crystal structure prediction by computer. A substantial part of the book is devoted to the techniques of choice in modern simulation, Monte Carlo and molecular dynamics, with their most recent developments and application to formed crystals and to the concomitant phases involved in nucleation and growth. Drawing on the decades-long experience of its author in teaching and research in the field of organic solid state, The Crystalline States of Organic Compounds is an indispensable source of key insights and future directions for students and researchers at any level, in academia and in industry.
Green chemistry already draws on many techniques and approaches developed by theoretical chemists, whilst simultaneously revealing a whole range of interesting new challenges for theoretical chemists to explore. Highlighting how work at the intersection of these fields has already produced beneficial results, Green Chemistry and Computational Chemistry: Shared Lessons in Sustainability is a practical, informative guide to combining green and theoretical chemistry principles and approaches in the development of more sustainable practices. Beginning with an introduction to both theoretical chemistry and green chemistry, the book goes on to explore current approaches being taken by theoretical chemists to address green and sustainable chemistry issues, before moving on to highlight ways in which green chemists are employing the knowledge and techniques of theoretical chemistry to help in developing greener processes. The future possibilities for theoretical chemistry in addressing sustainability issues are discussed, before a selection of case studies provides good insight into how these interactions and approaches have been successfully used in practice.
Foamability of Thermoplastic Polymeric Materials presents a cutting-edge approach to thermoplastic polymeric foams, drawing on the latest research and guiding the reader through the fundamental science, foamability, structure-property-processing relationship, multi-phase polymeric materials, degradation characteristics of biodegradable foams and advanced applications. Sections provide detailed information on foam manufacturing technologies and the fundamental science behind foaming, present insights on the factors affecting foamability, cover ways of enhancing the foamability of various polymeric materials, with special focus on multi-phase systems, discuss the degradation of biodegradable foams and special morphology development for scaffolds, packaging, acoustic and super-insulation applications, as well as cell seeding studies in scaffolds. Each application has specific requirements in terms of desired properties. This in-depth coverage and analysis helps those looking to move forward with microcellular processing and polymer foaming. This is an ideal resource for researchers, advanced students and professionals interested in the microcellular processing of polymeric materials in the areas of polymer foaming, polymer processing, plastics engineering and materials science.
Annual Reports on NMR Spectroscopy, Volume 104 has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Metal-Catalyzed Asymmetric Hydrogenation, Volume 68 in the Advances in Catalysis series, fills the gap between journal papers and textbooks across diverse areas of catalysis research. For more than 60 years, this series has recorded and presented the latest progress in the field of catalysis, giving the scientific community comprehensive and authoritative reviews. Chapters in this new release include Asymmetric hydrogenation of functionalized olefins, Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups, Asymmetric hydrogenation of imines, Asymmetric hydrogenation of ketones, Asymmetric hydrogenation in industry, and Computational insights into metal-catalyzed asymmetric hydrogenation. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry, with this release focusing on solid acids, surface acidity and heterogeneous acid catalysis.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Microbially-Derived Biosurfactants for Improving Sustainability in Industry explores the role biosurfactants may play in providing more sustainable, environmentally benign, and economically efficient solutions for mitigating challenges experienced in the industrial sector. Sections cover an introduction to their production and review their application across a broad range of industry applications, from polymer and biofuel production to lubrification and corrosion protection. Drawing on the knowledge of its expert team of global contributors, the book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work. As awareness and efforts to develop greener products and processes continue to grow in the chemistry community, biosurfactants are garnering much attention for the potential roles they can play, both in reducing the use and production of more toxic products and as tools for addressing existing problems.
Organic Ferroelectric Materials and Applications aims to bring an up-to date account of the field with discussion of recent findings. This book presents an interdisciplinary resource for scientists from both academia and industry on the science and applications of molecular organic piezo- and ferroelectric materials. The book addresses the fundamental science of ferroelectric polymers, molecular crystals, supramolecular networks, and other key and emerging organic materials systems. It touches on important processing and characterization methods and provides an overview of current and emerging applications of organic piezoelectrics and ferroelectrics for electronics, sensors, energy harvesting, and biomedical technologies. Organic Ferroelectric Materials and Applications will be of special interest to those in academia or industry working in materials science, engineering, chemistry, and physics.
Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed.
Advances in Inorganic Chemistry, Volume 78 presents timely and informative summaries on current progress in a variety of subject areas. Chapters in this new release include Catching reactive species in manganese oxidation catalysis, Mechanistic Puzzles from Iron(III) TAML Activators Including Substrate Inhibition, Zero-Order and Dual Catalysis, Stepping towards C-circular economy: Integration of solar chemistry and biosystems for efficient CO2 conversion into added value chemicals and fuels, Highlighting recent work on metal-coordinated and metallic nanoparticles as NIR imaging probes for biosensing application in living cells, and more. Users will find this to be a comprehensive overview of recent findings and trends from the last decade that covers various kinds of inorganic topics, from theoretical oriented supramolecular chemistry, to the quest for accurate calculations of spin states in transition metals.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes.
Evaluating the aromaticity of a molecular system and the influence of this concept on its properties is a crucial step in the development of novel aromatic systems. Modern computational methods can provide researchers with a high level of insight into such aromaticity, but identifying the most appropriate method for assessing a specific system can prove difficult. Aromaticity: Modern Computational Methods and Applications reviews the latest state-of-the-art computational methods in this field and discusses their applicability for evaluating the aromaticity of a system. In addition to covering aromaticity for typical organic molecules, this volume also explores systems possessing transition metals in their structures, macrocycles and even transition structures. The influence of the aromaticity on the properties of these species (including the structure, magnetic properties and reactivity) is highlighted, along with potential applications in fields including materials science and medicinal chemistry. Finally, the controversial and fuzzy nature of aromaticity as a concept is discussed, providing the basis for an updated and more comprehensive definition of this concept. Drawing on the knowledge of an international team of experts, Aromaticity: Modern Computational Methods and Applications is a unique guide for anyone researching, studying or applying principles of aromaticity in their work, from computational and organic chemists to pharmaceutical and materials scientists.
Tribocorrosion: Fundamentals, Methods, and Materials provides a balanced coverage of recent advancements in both experimental and computational areas of tribocorrosion, covering the basic concepts of tribology and electrochemistry, as well as testing set-ups, protocols, electrochemical methods, and more. It outlines experimental methods, demonstrating the different effects of material loss due to mechanical and electrochemical actions and looks at their effects in applied automotive, aerospace and biomedical settings. Standard testing protocols, tribocorrosion mechanisms in sliding contacts, and modeling and simulation techniques are all covered at length, as is bio-tribocorrosion and the best ways to prevent it.
Multiphase Polylactide Blends: Toward a Sustainable and Green Environment guides the reader through fundamentals, science, preparation, and key areas of innovation in polylactide (PLA) blends. Bio-based polymers, and notably PLA, have not only gained increasing interest as a more sustainable alternative but also bring challenges in terms of mechanical, rheological, thermal and physical properties, processability, shapability, and foamability. The use of blends looks to address these, with the development of new types of economically viable and environmentally friendly systems. This is a valuable book for academic researchers, scientists, and graduate students across bio-based polymers, polymer science, chemistry, and materials science, as well as engineers, R&D professionals, and all those in industry with interest in PLA-based blends, biopolymers, and sustainable materials and products. More specifically, the first three chapters of this book overview the fundamentals of thermoplastic polymers, polymer blends, and structure and properties of PLA. These chapters could technically be used as a valuable textbook on the noted topics. The rest of the chapters inclusively study the fundamentals, investigations, and achievements in PLA-based blends with various types of polymers. These include miscible blends of poly L-lactide and poly D-lactide, binary immiscible/miscible blends of PLA with other thermoplastics and elastomers, PLA-based ternary blends and blend nanocomposites, as well as PLA-based blend foams. Overall, this book provides a thorough and critical overview of the state of the art in PLA-based blends, including significant past and recent advances, with the aim of supporting and shaping further research and industrial application of these materials for the development of a green and sustainable future.
The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad (R).
Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects brings together the latest advances and novel technologies surrounding the synthesis and manufacture of biopolymers, ranging from bio-based polymers to synthetic polymers from bio-derived monomers. Sections examine bio-based polymer chemistry, discuss polymerization process and emerging design technologies, cover manufacturing and processing approaches, explain cutting-edge approaches and innovative applications, and focus on biomedicals and other key application areas. Final chapters provide detailed discussion and an analysis of economic and environmental concerns, practical considerations, challenges, opportunities and future trends. This is a valuable resource for researchers, scientists and advanced students in polymer science, bio-based materials, nanomaterials, plastics engineering, biomaterials, chemistry, biotechnology, and materials science and engineering, as well as R&D professionals, engineers and industrialists interested in the development of biopolymers for advanced products and applications.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for the Bioremediation of Polluted Environments explores the use of biosurfactants in remediation initiatives, reviewing knowledge surrounding the creation and application of biosurfactants for addressing issues related to the release of toxic substances in ecosystems. Sections cover their production, assessment and optimization for bioremediation, varied pollutant degradation applications, and a range of contaminants and ecological sites. As awareness and efforts to develop greener products and processes continues to grow, biosurfactants are garnering more attention for the potential roles they can play in reducing the use and production of more toxic products. Drawing on the knowledge of its expert team of global contributors, this book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work. |
You may like...
Heaven Official's Blessing: Tian Guan Ci…
Mo Xiang Tong Xiu
Paperback
(2)
Patronymica Cornu-Britannica - Or, the…
Richard Stephen Charnock
Paperback
R420
Discovery Miles 4 200
|