![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Gold, PGM and Oxide Minerals, Volume 2 focuses on the theory, practice, and chemistry of flotation of gold, platinum group minerals (PGMs), and the major oxide minerals, along with rare earths. It examines separation methods whose effectiveness is limited when using conventional treatment processes and considers commercial plant practices for most oxide minerals, such as pyrochlore-containing ores, copper cobalt ores, zinc ores, tin ores, and tantalum/niobium ores. It discusses the geology and mineralogy of gold, PGMs, and oxide minerals, as well as reagent and flotation practices in beneficiation. The book also looks at the factors affecting the floatability of gold minerals and describes PGM-dominated deposits such as Morensky-type deposits, hydrothermal deposits, and placer deposits. In addition, case studies of flotation and beneficiation in countries such as Canada, Africa, Russia, Chile, and Saudi Arabia are presented. This book will be useful to researchers, university students, and professors, as well as mineral processors faced with the problem of beneficiation of difficult-to-treat ores.
This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer's usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).
This book provides microscopic insights into chemical properties of NO on metal surfaces. NO/metal systems have been studied intensively to understand heterogeneous catalysis to detox exhaust NOx gas. The identification and componential analysis of various and mixed chemical species of NO adsorbed onto the surfaces have been significant challenges faced by conventional experimental techniques, such as vibrational spectroscopies. The author investigated "individual" NO molecules on Cu surfaces using low-temperature scanning tunneling microscopy (STM). STM not only provides information on the geometric, electronic, and vibrational properties at the single-molecule level; it is also able to manipulate molecules on surfaces to induce chemical reaction. Exploiting those techniques, the author chemically identified individual NO-related species on the surfaces and discovered new reaction processes for NO reduction, which provides microscopic insights into the catalytic mechanisms. The author also visualized wave functions of electrons in a valence orbital of NO and demonstrated that the wave functions are modified by the formation of covalent bonding or hydrogen bonding. This is, namely, "the visualization of quantum mechanics in real space," which is certainly worth reading. Furthermore, the book demonstrates that direct observation of valence orbitals helps to elucidate the reactivity of molecules adsorbed onto surfaces. This innovative approach to studying molecular properties will contribute to further development of STM and its related methods.
This book presents a collection of invited research and review contributions on recent advances in (mainly) theoretical condensed matter physics, theoretical chemistry, and theoretical physics. The volume celebrates the 90th birthday of N.H. March (Emeritus Professor, Oxford University, UK), a prominent figure in all of these fields. Given the broad range of interests in the research activity of Professor March, who collaborated with a number of eminent scientists in physics and chemistry, the volume embraces quite diverse topics in physics and chemistry, at various dimensions and energy scales. One thread connecting all these topics is correlation in aggregated states of matter, ranging from nuclear physics to molecules, clusters, disordered condensed phases such as the liquid state, and solid state physics, and the various phase transitions, both structural and electronic, occurring therein. A final chapter leaps to an even larger scale of matter aggregation, namely the universe and gravitation. A further no less important common thread is methodological, with the application of theoretical physics and chemistry, particularly density functional theory and statistical field theory, to both nuclear and condensed matter.
Modeling of Chemical Reactions covers detailed chemical kinetics
models for chemical reactions. Including a comprehensive treatment
of pressure dependent reactions, which are frequently not
incorporated into detailed chemical kinetic models, and the use of
modern computational quantum chemistry, which has recently become
an extraordinarily useful component of the reaction kinetics
toolkit.
The aim of this book is to show how supramolecular complexity of
cell organization can dramatically alter the functions of
individual macromolecules within a cell. The emergence of new
functions which appear as a consequence of supramolecular
complexity, is explained in terms of physical chemistry.
The work describes the production technology of standard medical radionuclides using reactors and cyclotrons for patient diagnosis and therapy. A special focus lies on the science and technology involved in the development of novel radionuclides for positron emission tomography (PET) and internal targeted radiotherapy. The availability of those radionuclides is opening up new potential in clinical research, especially in neurology, cardiology and oncology. The future perspectives of the developing technology are also discussed.
Glass Nanocomposites: Synthesis, Properties and Applications provides the latest information on a rapidly growing field of specialized materials, bringing light to new research findings that include a growing number of technologies and applications. With this growth, a new need for deep understanding of the synthesis methods, composite structure, processing and application of glass nanocomposites has emerged. In the book, world renowned experts in the field, Professors Karmakar, Rademann, and Stepanov, fill the knowledge gap, building a bridge between the areas of nanoscience, photonics, and glass technology. The book covers the fundamentals, synthesis, processing, material properties, structure property correlation, interpretation thereof, characterization, and a wide range of applications of glass nanocomposites in many different devices and branches of technology. Recent developments and future directions of all types of glass nanocomposites, such as metal-glasses (e.g., metal nanowire composites, nanoglass-mesoporous silica composites), semiconductor-glass and ceramic-glass nanocomposites, as well as oxide and non-oxide glasses, are also covered in great depth. Each chapter is logically structured in order to increase coherence, with each including question sets as exercises for a deeper understanding of the text.
This volume presents a variety of articles that encompass the broad
scope of supramolecular chemistry. Reusch's chapter covers
biological channel compounds, while the work of Hall and Kirkovits
looks into their synthetic counterparts. Metal ion sensors,
calixarenes and "crystal engineering" are described by pioneers in
these fields. This work, whilst current and authoritative, shows us
that much remains to be undertaken and understood. It is hoped that
this volume will be of interest to those who wish to fill these
gaps; scientists already in the field and those who may see
extensions of their own work that will bring them into it.
This thesis proposes a novel way to catch light energy using an ultrasmall nanostructure. The author has developed photon-materials systems to open the way for novel photoexcitation processes based on the findings obtained from in-situ observation of the systems in which localized surface plasmon (LSP) and molecules interact strongly. The highly ordered metal nanostructure provided the opportunity for anisotropic photoexcitation of materials in an eccentric way. The optimization of the systems via nanostructuring and electrochemical potential control resulted in the novel excitation process using LSP to realize the additional transition for photoexcitation. Furthermore, excited electronic states formed the strong coupling between LSP and excitons of molecules. This thesis will provide readers with an idea for achieving very effective processes for photon absorption, scattering, and emission beyond the present limits of photodevices.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This volume offers a careful selection of trend-setting topics in the field. In-depth review articles illustrate current trends in the field. Experienced experts present a comprehensive overview concerning the electrochemical biosensing of glucose for diabetes care from an industrial research and development perspective a survey of bioassay applications for individually addressable electrochemical arrays, focusing on liquid-phase bioanalytical assays a review of recent advances in the development of electronic tongues based on the use of biosensor arrays coupled with advanced chemometric data analysis novel strategies of DNA biosensor development and corresponding applications for studies of DNA damage a survey of recent trends in the electrochemistry of redox proteins, including the increasing diversity of redox proteins used in electrochemical studies, novel immobilization strategies, and biosensor / biofuel cell applications an overview of electrochemical sensing of blood gases with advanced sensor concepts a survey of recent bioelectroanalytical studies with high spatial resolution using scanning electrochemical microscopy with a wide range of applications covering imaging of living cells, studies of metabolic activity, imaging of local enzyme activity, and studies of transport through biolayers This timely collection will be of interest not only for experts in the field, but also to students and their teachers in disciplines that include analytical chemistry, biology, electrochemistry, and various interdisciplinary research areas.
Although coordination chemistry naturally centers on the synthesis of coordination compounds, the synthesis of these materials is typically not an end in itself. Coordination compounds are utilized in all branches of chemistry; from theoretical modeling to industrial and consumer products. While a large amount of information is available on coordination chemistry in general and synthetic methods in particular, no comprehensive work has been presented on the preparation of coordination compounds with an emphasis on synthetic strategies rather than on detailed descriptions of specific syntheses. The goal of this book is to provide an approach to coordination chemistry that is based upon preparative strategies.The main aim of the authors is to present a systematic classification of synthetic reactions rather than an encyclopedic listing of experimental results. Hence, the coverage is more selective than exhaustive. Despite this, the book provides access to the original literature with ca. 2000 references. The edition is well-illustrated and contains almost 250 schemes, figures and illustrations of crystal structures of selected complexes.
This edited, multi-author volume contains 14 selected, peer-reviewed contributions based on the presentations given at the 18th International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP XVIII), held at Casa da Cultura de Paraty, Rio de Janeiro, Brazil, in December 2013. It is divided into several sections written by leaders in the respective fields of quantum methodology applied to atomic molecular and condensed matter systems, each containing the most relevant material based on related topics. Recent advances and state-of-the-art developments in the quantum theory of atomic, molecular and condensed matter systems (including bio and nano structures) are presented.
This book provides state-of-the-art computational approaches for accelerating materials discovery, synthesis, and processing using thermodynamics and kinetics. The authors deliver an overview of current practical computational tools for materials design in the field. They describe ways to integrate thermodynamics and kinetics and how the two can supplement each other.
This volume will be of interest to epidemiologists, food microbiologists, and anyone working on comparing bacterial isolates. Pulse Field Gel Electrophoresis: Methods and Protocols guides readers through methods and protocols that will advance the harmonisation of PFGE methodologies and facilitate inter-laboratory comparisons of PFGE profiles from pathogenic and non-pathogenic bacteria. As a volume in the highly successful Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy-to-use, Pulse Field Gel Electrophoresis: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals provides an accessible overview of this key, foundational topic in inorganic chemistry. Thoroughly illustrated within the book and supplemented by online 3D images and videos in full color, this valuable resource covers basic fundamentals before exploring more advanced topics of interest. The work begins with an introduction to the structure, properties, and syntheses of ligands with metal centers, before discussing the variety of isomerism exhibited by coordination compounds, such as structural, geometrical and optical isomerism. As thermodynamics and kinetics provide a gateway to synthesis and reactivity of coordination compounds, the book then describes the determination of stability constants and composition of complexes. Building upon those principles, the resource then explains a wide variety of nucleophilic substitution reactions exhibited by both octahedral and square planar complexes. Finally, the book discusses metal carbonyls and nitrosyls, special classes of compounds that can stabilize zero or even negative formal oxidation states of metal ions. Highlighting preparations, properties, and structures, the text explores the unique type of Metal-Ligand bonding which enable many interesting applications of these compounds. Thoughtfully organized for academic use, Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals encourages interactive learning. Advanced undergraduate and graduate students, as well as researchers requiring a full overview and visual understanding of coordination chemistry, will find this book invaluable.
Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. |
You may like...
Sitting Pretty - White Afrikaans Women…
Christi van der Westhuizen
Paperback
(1)
Physics of Interacting Electrons in…
Hiroshi Kamimura, Hideo Aoki
Hardcover
R1,154
Discovery Miles 11 540
Whales, Candlelight, and Stuff Like That…
Maryann Overstreet
Hardcover
R4,101
Discovery Miles 41 010
Intra-individual Variation in Language
Alexander Werth, Lars Bulow, …
Hardcover
R3,472
Discovery Miles 34 720
|