![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
"Advances in Catalysis" fills the gap between the journal papers
and the textbooks across the diverse areas of catalysis research.
For more than 60 years Advances in Catalysis has been dedicated to
recording progress in the field of catalysis and providing the
scientific community with comprehensive and authoritative reviews.
This series in invaluable to chemical engineers, physical chemists,
biochemists, researchers and industrial chemists working in the
fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all aspects of catalysis research
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students
This book reflects on the significant and highly original scientific contributions of Hans Primas. A professor of chemistry at ETH Zurich from 1962 to 1995, Primas continued his research activities until his death in 2014. Over these 50 years and more, he worked on the foundations of nuclear magnetic resonance spectroscopy, contributed to a number of significant issues in theoretical chemistry, helped to clarify central topics in quantum theory and the philosophy of physics, suggested innovative ways of addressing interlevel relations in the philosophy of science, and introduced cutting-edge approaches in the flourishing young field of scientific studies of consciousness. His work in these areas of research and its continuing impact is described by noted experts, colleagues, and collaborators of Primas. All authors contextualize their contributions to facilitate the mutual dialog between these fields.
Until now the topic of gas dynamics has been included as a section in comprehensive textbooks on physical chemistry, or discussed at too high a level for undergraduate or graduate students. This book, based on courses given by the author in several countries, aims to fill this gap. To make the subject more accessible to students, there is a very strong emphasis on current applications of the theory. Part I introduces the kinetic theory of gases with relevance to molecular energies and intermolecular forces. Part II focuses on how these theories are used to explain real techniques and phenomena involving gases, allowing students to answer questions such as: 'How does a Laser work?' and 'What is a shock wave?' By stressing the practical implications, the book explains the theory of gas dynamics in a highly readable and comprehensible manner.
"Colloidal Foundations of Nanoscience" explores the theory and
concepts of colloid chemistry and its applications to nanoscience
and nanotechnology. It provides the essential conceptual and
methodological tools to approach nano-research issues. The authors
expertise in colloid science will contribute to the understanding
of basic issues involved in research. Each chapter covers a
classical subject of colloid science, in simple and straightforward
terms, and addresses its relevance to nanoscience before
introducing case studies.
Discovery of Frustrated Lewis Pairs: Intermolecular FLPs for Activation of Small Molecules, by Douglas W. Stephan Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features, by Gerald Kehr, Sina Schwendemann, Gerhard Erker Frustrated Lewis Pair Mediated Hydrogenations, by Douglas W. Stephan, Gerhard Erker Amine-Borane Mediated Metal-Free Hydrogen Activation and Catalytic Hydrogenation, by Victor Sumerin, Konstantin Chernichenko, Felix Schulz, Markku Leskela, Bernhard Rieger, Timo Repo Hydrogen Activation by Frustrated Lewis Pairs: Insights from Computational Studies, by Tibor Andras Rokob, Imre Papai Quantum Chemistry of FLPs and Their Activation of Small Molecules: Methodological Aspects, by Birgitta Schirmer, Stefan Grimme Computational Design of Metal-Free Molecules for Activation of Small Molecules, Hydrogenation, and Hydroamination, by Zhi-Xiang Wang, Lili Zhao, Gang Lu, Haixia Li, Fang Huang Computational Studies of Lewis Acidity and Basicity in Frustrated Lewis Pairs, by Thomas M. Gilbert Solid-State NMR as a Spectroscopic Tool for Characterizing Phosphane - Borane Frustrated Lewis Pairs, by Thomas Wiegand, Hellmut Eckert, Stefan Grimme
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.
In this thesis, Andrew Logsdail demonstrates that computational chemistry is a powerful tool in contemporary nanoscience, complementing experimental observations and helping guide future experiments. The aim of this particular PhD is to further our understanding of structural and compositional preferences in gold nanoparticles, as well as the compositional and chemical ordering preferences in bimetallic nanoalloys formed with other noble metals, such as palladium and platinum. Highlights include: calculations of the structural preferences and optical-response of gold nanoparticles and gold-containing nanoalloys; the design and implementation of novel numerical algorithms for the structural characterisation of gold nanoparticles from electron microscopy images; and electronic structure calculations investigating the interaction of gold nanoparticles with graphene and graphite substrates.The results presented here have significant implications for future research on the chemical and physical properties of gold-based nanoparticles and are of interest to many researchers working on experimental and theoretical aspects of nanoscience.
This monograph covers the concept of cartesian tensors with the needs and interests of physicists, chemists and other physical scientists in mind. After introducing elementary tensor operations and rotations, spherical tensors, combinations of tensors are introduced, also covering Clebsch-Gordan coefficients. After this, readers from the physical sciences will find generalizations of the results to spinors and applications to quantum mechanics.
This book focuses on molecular space chemistry, which is recognized as an important concept for the design of novel functional materials and catalysts. A wide variety of topics and ideas included in this book are based on that concept. The book showcases recent representative examples of molecular space design to create functional materials and catalysts possessing unique properties. This unique volume will be of great interest to chemists in a wide variety of research fields, including organic, inorganic, biological, polymer, and supramolecular chemistry. Readers will obtain new ideas and directions to create novel functional molecules, and those ideas will lead to innovative views of science.
A Zahigkeitscharakterisierung mit Hilfe bruchmechanischer Konzepte.- A 1 Stand und Entwicklungstendenzen.- Neue Entwicklungen bei der bruchmechanischen Zahigkeitsbewertung von Kunststoffen und Verbunden.- JTJ-Konzept und dissipative Energien am Riss.- A 2 Experimentelle Methoden.- Bruchmechanische Messmethoden fur Polymere.- Einfluss von Prufkoerpergeometrie und Beanspruchungsbedingungen auf das Risswiderstandsverhalten von PVC und PP.- Prozedur zur Ermittlung des Risswiderstandsverhaltens mit dem instrumentierten Kerbschlagbiegeversuch.- Experimentelle Methoden zur Charakterisierung des Bruchverhaltens von HDPE-Rohren.- Die mechanische Charakterisierung von Polymeren und verstarkten Polymeren - Experimentelle Probleme und theoretische Hintergrunde.- A 3 Alternative Methoden.- Approximative Methoden zur Beschreibung des Risswiderstandsverhaltens im instrumentierten Kerbschlagbiegeversuch.- Anwendung der Normalisierungsmethode zur Ermittlung von Risswiderstandskurven an amorphen PVC-Werkstoffen.- Berechnung von J-R-Kurven aus Kraft-Durchbiegungs-Diagrammen auf Basis des Gelenkprutkoerpers.- J-TJ- und ?-T?-Stabilitatsdiagramme als Grundlage einer alternativen Methode zur Ermittlung von Instabilitatswerten aus Risswiderstandskurven.- B Morphologie-Eigenschafts-Korrelationen.- B 1 Homopolymerisate.- UEbermolekulare Struktur und mechanische Eigenschaften von isotaktischem Polypropylen.- Bruchverhalten und Morphologie von HDPE-Werkstoffen.- Zahigkeits- und Relaxationsverhalten von PMMA, PS und PC.- Crazing in amorphen Polymeren - Entstehung und Wachstum fibrillarer Crazes in der Nahe der Glasubergangstemperatur.- Einfluss der Temperatur und der Feuchtigkeit auf das Zahigkeitsverhalten von Polyamid.- B 2 Blends.- Zusammenhang zwischen Bruchverhalten und Morphologie von PE/PP-Blends.- Einfluss von Modifikatorkonzentration und Pruftemperatur auf das Zahigkeitsverhalten von modifizierten Polyamiden.- Morphologie und Zahigkeit von PP/EPR-Blends.- B 3 Copolymerisate.- Anwendung bruchmechanischer Werkstoffkenngroessen zur Optimierung des Zahigkeitsverhaltens von polymeren Mehrphasensystemen mit PP-Matrix.- Bruchmechanische Zahigkeitsbewertung des Rissinitiierungs-und Rissausbreitungsverhaltens von Ethylen-Propylen-Random-Copolymerisaten.- Risszahigkeitsverhalten von ABS-Werkstoffen.- ABS - Sproedbruch-Untersuchungen der Morphologie-Versagens-Beziehung.- C Hybride Methoden der Kunststoffprufung und Kunststoffdiagnostik.- Neue Moeglichkeiten der zerstoerungsfreien Charakterisierung von Polymeren.- Ermittlung des lokalen Deformationsverhaltens von Kunststoffen mittels Laserextensometrie.- D Technologische Prufverfahren.- Einsatzgrenzen von Kunststoffen und deren Verbunden unter Reibungs- und Verschleissbedingungen.- Modifizierung von Polymerwerkstoffen mit amorphem Kohlenstoff zur Optimierung des Reibungsverhaltens.- Mechanisches Schwingungsverhalten einer CFK-Verdichterschaufel.- E Biokompatible Werkstoffe und medizinische Implantate.- Polymere Werkstoffe in der orthopadischen Gelenkchirurgie.- Werkstoffparameter von funktionellen Prothesen im HNO-Bereich bei fortschreitender Degradation.- Mikrobielle Korrosion von pharyngo-trachealen Shuntventilen.- Werkstoff-und Deformationsverhalten von Stimmprothesen - Sensibilitat mechanischer Prufverfahren.- F Spezielle Werkstoffe.- Rissinitiierung, Verschleiss und molekulare Struktur von gefullten Vulkanisaten.- Charakterisierung des Deformationsverhaltens von modifiziertem Polymerbeton.- G Einsatz-und Anwendungsgrenzen.- Der Einfluss des biaxialen Spannungszustandes auf die Werkstoffkennwertfunktionen nichtlinear-viskoelastischer Werkstoffe.- Mediale Bestandigkeit von PP/GF-Verbunden.- Einfluss der medialen Auslagerung auf das Impactverhalten glasfaserverstarkter Kunststoffe.- Physikalische Alterung von Polypropylen.- Autorenindex.
This multi-author contributed volume contains chapters featuring the development of the DV-X method and its application to a variety of problems in Materials Science and Spectroscopy written by leaders of the respective fields. The volume contains a Foreword written by the Chairs of Japanese and Korea DV-X alpha Societies. This book is aimed at individuals working in Quantum Chemistry.
Capillary electrophoresis (CE) is a relatively new separation technique suitable for handling small amounts of sample very important in bioanalytical research and in various clinical, diagnostic, genetic, and forensic applications. In Capillary Electrophoresis of Biomolecules: Methods and Protocols, expert researchers in the field provide key techniques to investigate CE focusing on simple and complex carbohydrates (polysaccharides), aminoacids, peptides and proteins, enzymes, and nucleic acids. Along with practical procedures, reviews discussing CE applications related to bio(macro)molecules are also included. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Capillary Electrophoresis of Biomolecules: Methods and Protocols provides the reader with the latest break throughs and improvements in CE and CE techniques applied to several classes of bio(macro)molecules.
This thesis reports the discovery of metal nanoparticles having new structures that do not exist in bulk state and that exhibit hydrogen storage ability or CO oxidation activity. Research into the reaction of hydrogen with metals has attracted much attention because of potential applications as effective hydrogen storage materials, as permeable films, or as catalysts for hydrogenation. Also, CO oxidation catalysts have been extensively developed because of their importance to CO removal from car exhaust or fuel-cell systems. At the same time, atomic-level (solid solution) alloying has the advantage of being able to continuously control chemical and physical properties of elements by changing compositions and/or combinations of constituent elements. This thesis provides a novel strategy for the basis of inter-elemental fusion to create highly efficient functional materials for energy and material conversions.
The work presented in Thomas M. Gogsig's thesis deals with the
discovery of new metal-catalyzed transformations ranging from
Kumada-, Heck- and Suzuki-type reactions. The thesis starts with a
formidable introduction to Pd-catalyzed cross-coupling reactions.
New results have been obtained on:
This book introduces recent progress in biological energetics from ATP hydrolysis to molecular machineries. The role of water is now recognized to be essential in biological molecular energetics. Although energetics is a rather distant field to many biologists, any working models for protein machineries such as protein motors, transporters, and other enzymes must be consistent with their energetics. Therefore, the book is intended to help scientists build systematic models of biomolecular functions based on three categories: (1) ATP hydrolysis reactions including ionic hydration and protonation-deprotonation of biomolecules, (2) protein-ligand/protein-protein interactions including hydration-dehydration processes, and (3) functioning mechanisms of protein machineries based on water functions.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant. The individual volumes in the series are
thematic. The goal of each volume is to give the reader, whether at
a university or in industry, a comprehensive overview of an area
where new insights are emerging that are of interest to a larger
scientific audience. Thus each review within the volume critically
surveys one aspect of that topic and places it within the context
of the volume as a whole. The most significant developments of the
last 5 to 10 years should be presented using selected examples to
illustrate the principles discussed. A description of the physical
basis of the experimental techniques that have been used to provide
the primary data may also be appropriate, if it has not been
covered in detail elsewhere. The coverage need not be exhaustive in
data, but should rather be conceptual, concentrating on the new
principles being developed that will allow the reader, who is not a
specialist in the area covered, to understand the data presented.
Discussion of possible future research directions in the area is
welcomed. Review articles for the individual volumes are invited by
the volume editors.
This book presents two main sets of paper-based analytical systems. The first set is a platform for the analysis of glucose, cholesterol and uric acid in biological samples, and the second set is a cutting-edge electronic tongue system for the analysis of beverages (mineral water, beer, wine). This thesis also provides an extensive review of 33 methods of enzyme immobilization on paper which have been evaluated to enhance the storage stability of the proposed system for biomarker detection. From a practical perspective, this thesis covers a diverse set of topics related to paper-based sensing, including colorimetric and electrochemical detection methods, different sets of architecture (spot-tests, lateral and tangential flow assays), methods of fabrication (wax printing, cutting, impregnation with polymers), measurements in stationary and flow conditions as well computer modeling of proposed systems and sophisticated data analysis using chemometric techniques. This book is useful for PhD students working in this or a related field who require detailed information about methodology and background to this research.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book provides a concise overview of the photophysics and spectroscopy of bio chromophore ions. The book "Photophysics of Ionic Biochromophores" summarizes important recent advances in the spectroscopy of isolated biomolecular ions in vacuo, which has within the last decade become a highly active research field. Advanced instrumental apparatus and the steady increase in more and more powerful computers have made this development possible, both for experimentalists and theoreticians. Applied techniques described here include absorption and fluorescence spectroscopy, which are excellent indicators of environmental effects and can thus shed light on the intrinsic electronic structures of ions without perturbations from e.g. water molecules, counter ions, nearby charges, and polar amino acid residues. When compared with spectra of the chromophores in their natural environment, such spectra allow to identify possible perturbations. At the same time gas-phase spectra provide important benchmarks for quantum chemistry calculations of electronically excited states. This volume focuses on biological systems from protein biochromophores, e.g. the protonated Schiff-base retinal responsible for vision, and individual aromatic amino acids to peptides and whole proteins, studied using visible, ultraviolet and vacuum ultraviolet light. Work on DNA nucleotides and strands that are amenable to mass spectrometric studies because of the negatively charged sugarphosphate backbone are also presented. DNA strands represent an example of the interplay between multiple chromophores, which is even harder to model correctly than just single chromophores due to spatially extended excited states and weak coupling terms. The experimental techniques used to measure spectra and commonly used theoretical methods are described with a discussion on limitations and advantages. The volume includes an updated status of the field and interesting future directions such as cold ion spectroscopy.
This textbook takes an interdisciplinary approach to the subject of thermodynamics and is therefore suitable for undergraduates in chemistry, physics and engineering courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This book presents a new system of solar cells. Colloidal nanocrystals possess many physical and chemical properties which can be manipulated by advanced control over structural features like the particle size. One application field is photovoltaics where colloidal semiconductor nanocrystals are explored as components of photo-active layers which can be produced from liquid media, often in combination with conductive polymers. The further development of this interdisciplinary field of research requires a deep understanding of the physics and chemistry of colloidal nanocrystals, conducting polymers and photovoltaic devices. This book aims at bridging gaps between the involved scientific disciplines and presents important fundamentals and the current state of research of relevant materials and different types of nanoparticle-based solar cells. The book will be of interest to researchers and PhD students. Moreover, it may also serve to accompany specialized lectures in related areas.
This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal |
![]() ![]() You may like...
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Conversations With A Gentle Soul
Ahmed Kathrada, Sahm Venter
Paperback
![]()
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|