![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This book provides the reader with the latest directions in the field of homogeneous catalysts for fine chemical production. Each theme is introduced from a broad perspective: materials, strategies, techniques and processes are presented both from a theoretical and a practical point of view. The focus is on those catalysts - particularly heterogenized homogeneous catalysts - and applications leading to the production of fine and speciality chemicals in a highly selective manner and with minimal environmental and economic impact. Each topic is treated critically so topics such as factors affecting the catalysts performance, the influence of the support, the catalysts' deactivation, the metal leaching or the issues on recycling are analyzed. Industrial and academic points of view are integrated and the feasibility and timeliness of industrial applications are illustrated. The reader is also provided with a comparison between parent heterogeneous and homogeneous systems. Content Level Research
In this thesis, Till Cremer investigates the bulk properties of ionic liquids (IL), the IL/vacuum interface and the IL/solid interface. For these studies the author primarily uses angle-resolved X-ray photoelectron spectroscopy under ultrahigh vacuum conditions. ILs represent a class of materials with unique physico-chemical properties. Many applications take advantage of the extremely low vapor pressure of aprotic ILs to fabricate permanent, non-volatile liquid coatings on solid materials. The author focuses on issues related to thin IL coatings, in particular concerning new catalytic concepts such as the supported ionic liquid phase (SILP) and solid catalyst with ionic liquid layer (SCILL) systems. Till Cremer presents a number of fundamental contributions to the new field of "Ionic Liquid Surface and Interface Science". Highlights are his results concerning anion/cation-interactions and the growth of ultrathin layers of ionic liquids on various substrates in the context of supported ionic liquid catalysis. His results have significantly contributed to the present level of understanding in the field and accordingly he is author and coauthor of ten publications on the topic in high-ranked journals.
This book introduces recent progress in stimuli-responsive interfaces constructed on colloidal materials such as micelles and vesicles and on solid material surfaces. There is discussion of the effect of stimuli such as light, heat, pH, and electric field on changes in the morphology of the molecules at the interfaces and that of colloidal materials. The changes in the properties, such as gelation ability, dispersibility, and emulsification ability, of the resultant bulk materials containing these colloidal materials or those of the solid material are also covered. In addition, design criteria for high sensitivity, quick responsiveness, and high reversibility are presented. In each author's original system, the correlations between molecular-level responses and bulk functional responses are described as well. This book serves as an excellent guide to designing and fabricating novel, functional, eco-friendly stimuli-responsive interfaces and related materials.
Lucas Montero de Espinosa and Michael A. R. Meier: Olefin Metathesis of Renewable Platform Chemicals.- Pieter C. A. Bruijnincx, Robin Jastrzebski, Peter J. C. Hausoul, Robertus J. M. Klein Gebbink, and Bert M. Weckhuysen: Pd-Catalysed Telomerisation of 1,3-Dienes with Multifunctional Renewable Substrates - Versatile Routes for the Valorisation of Biomass-Derived Platform Molecules.- A Behr, A. J. Vorholt: Hydroformylation and related reactions of renewable resources.- Ties J. Korstanje, Robertus J.M. Klein Gebbink: Catalytic oxidation and deoxygenation of renewables with rhenium complexes.- Antoine Buchard, Clare M. Bakewell, Jonathan Weiner and Charlotte K. Williams: Recent Developments In Catalytic Activation Of Renewable Resources For Polymer Synthesis.
In this thesis, real-time evolution of the nanopore channel growth and self-ordering process in anodic nanoporous alumina are simulated on the basis of an established kinetics model. The simulation results were in accordance with the experiments on the (i) growth sustainability of pore channels guided by pre-patterns; and (ii) substrate grain orientation dependence on self-ordering. In addition, a new fabrication method for the rapid synthesis of highly self-ordered nanoporous alumina is established, based on a systematic search for the self-ordering conditions in experiments. Lastly, it reports on a novel surface-charge induced strain in nanoporous alumina-aluminium foils, which indicates that nanoporous alumina can be used as a new type of actuating material in micro-actuator applications.
Electrocatalysts are the heart of power devices where electricity is produced via conversion of chemical into electrical energy. - pressive advances in surface science techniques and in first pr- ciples computational design are providing new avenues for signi- cant improvement of the overall efficiencies of such power dev- es, especially because of an increase in the understanding of el- trocatalytic materials and processes. For example, the devel- ment of high resolution instrumentation including various electron and ion-scattering and in-situ synchrotron spectroscopies, elect- chemical scanning tunneling microscopy, and a plethora of new developments in analytical chemistry and electrochemical te- niques, permits the detailed characterization of atomic distribution, before, during, and after a reaction takes place, giving unpre- dented information about the status of the catalyst during the re- tion, and most importantly the time evolution of the exposed ca- lytic surfaces at the atomistic level. These techniques are c- plemented by the use of ab initio methods which do not require input from experimental information, and are based on numerical solutions of the time-independent Schrodinger equation including electron-electron and electron-atom interactions. These fir- principles computational methods have reached a degree of - turity such that their use to provide guidelines for interpretation of experiments and for materials design has become a routine practice in academic and industrial communities.
Describes the relations between reactions in chemical and biochemical systems with special emphasis to high selective oxidation reactions by hydrogen peroxide.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Volume 2 of Formulation Science and Technology is a survey of the different types of formulations used in the chemical industry and offers numerous real-world examples of foams, gels, latexes etc. It offers in-depth explanations for research scientists, universities, and industry practitioners looking for a complete understanding of which type formulation works best for a certain application and why.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Learning the basics of physical chemistry with a unique, innovative approach. Georg Job and Regina Rueffler introduce readers to an almost intuitive understanding of the two fundamental concepts, chemical potential and entropy. Avoiding complex mathematics, these concepts are illustrated with the help of numerous demonstration experiments. Using these concepts, the subjects of chemical equilibria, kinetics and electrochemistry are presented at an undergraduate level. The basic quantities and equations necessary for the qualitative and quantitative description of chemical transformations are introduced by using everyday experiences and particularly more than one hundred illustrative experiments, many presented online as videos. These are in turn supplemented by nearly 400 figures, and by learning objectives for each chapter. From a review of the German edition: "This book is the most revolutionary textbook on physical chemistry that has been published in the last few decades."
This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles-highlighting the interfacial phenomena and the corresponding interactions between particles. The book's central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between aggregates. It is illustrated how such knowledge may significantly enhance the characterisation of colloidal suspensions. The final part of the book refers to the information, ideas and concepts already presented in order to address technical aspects of the preparation of colloidal suspensions-in particular the performance of relevant dispersion techniques and the stability of colloidal suspensions.
Catalysis is the acceleration of a chemical reaction by a catalyst,
a substance that notably affects the rate of a chemical reaction
without itself being consumed or altered. Since 1948, "Advances in
Catalysis" has filled the gap between the papers that report on and
the textbooks that teach in the diverse areas of catalysis
research. The editors of and contributors to "Advances in
Catalysis" are dedicated to recording progress in this area.
The major theme of this book is analytical approaches to trace metal and speciation analysis in biological specimens. The emphasis is on the reliable determination of a number of toxicologically and environmentally important metals. It is essentially a handbook based on the practical experience of each individual author. The scope ranges from sampling and sample preparation to the application of various modern and well-documented methods, including quality assessment and control and statistical treatment of data. Practical advice on avoiding sample contamination is included. In the first part, the reader is offered an introduction into the basic principles and methods, starting with sampling, sample storage and sample treatment, with the emphasis on sample decomposition. This is followed by a description of the potential of atomic absorption spectrometry, atomic emission spectrometry, voltammetry, neutron activation analysis, isotope dilution analysis, and the possibilities for metal speciation in biological specimens. Quality control and all approaches to achieve reliable data are treated in chapters about interlaboratory and intralaboratory surveys and reference methods, reference materials and statistics and data evaluation. The chapters of the second part provide detailed information on the analysis of thirteen trace metals in the most important biological specimens. The following metals are treated in great detail: Aluminium, arsenic, cadmium, chromium, copper, lead, selenium, manganese, nickel, mercury, thallium, vanadium and zinc. The book will serve as a valuable aid for practical analysis in biomedical laboratories and for researchers involved with trace metal and species analysis in clinical, biochemical and environmental research.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 36 covers literature published from July 2003 to June 2004.
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
The unfortunate and serious accident at the nuclear power plants in Fukushima, Japan caused by the earthquake and tsunami in March 2011 dealt Japan a serious blow. Japan was nearly deprived of electric power when in response to the accident all nuclear reactors in Japan were shut down. This shortage further accelerated the introduction of renewable energies. This book surveys the new materials and approaches needed to use nanotechnology to introduce the next generation of advanced lithium batteries, currently the most promising energy storage devices available. It provides an overview of nanotechnology for lithium batteries from basic to applied research in selected high technology areas. The book especially focuses on near-term and future advances in these fields. All contributors to this book are expert researchers on lithium batteries.
This thesis gives a thorough account of the development of iron-catalysed hydrosilylation, hydroboration and hydromagnesiation reactions. With extraordinary referencing and scientific argument, Mark Greenhalgh describes the development of methodologies which require only commercially available materials and non-specialised techniques. The intention of this approach is to ensure the science can be adopted widely by the chemical community. In addition to an insight into the processes involved in methodology development, Greenhalgh discusses and determines the relevant reaction mechanisms. This thesis provides not only the most thorough review of the area, but offers a level of insight well beyond that expected from a Ph.D. student. The work in this thesis has been published at the highest level, and the results and ideas have led to 3 industry-funded Ph.D. studentships and grant income in excess of GBP1 million.
In the first volume, Professors Poole and Farach provided one of the first definitive reference tools for this field. In this second volume, the authors present a comprehensive source for subfields of ESR not covered in the first volume, including: * Sensitivity * Field Swept versus Frequency Swept Spectra * Resonators * Line Shapes * Electron Spin Echo Envelope Modulation * Hamiltonian types and symmetries * ESR Imaging * High Magnetic Fields and High Frequencies. Written by recognized experts in the field, and intended for students and researchers, these handbooks bring together wide-ranging data from diverse disciplines within ESR, and then integrate it into a comprehesive and definitive resource. An invaluable reference for all those involved in ESR research.
Advances in the Theory of Atomic and Molecular Systems, is a collection of contributions presenting recent theoretical and computational developments that provide new insights into the structure, properties, and behavior of a variety of atomic and molecular systems. This volume (subtitled: Conceptual and Computational Advances in Quantum Chemistry) focuses on electronic structure theory and its foundations. This volume is an invaluable resource for faculty, graduate students, and researchers interested in theoretical and computational chemistry and physics, physical chemistry and chemical physics, molecular spectroscopy, and related areas of science and engineering.
Free radicals are used as reactive intermediates in a wide range of organic syntheses as well as playing an important role in biological systems and industrial processes. Free radical chemistry is a rapidly developing area, with applications not only in chemistry but also in processes related to the environment, biology, drug research and medicine. General Aspects of the Chemistry of Radicals is an introductory book, discussing methods of formation and detection of free radicals, the rate of their reactions and their thermochemistry. The book closely examines the reactivity of free radical reactions, rate constants and temperature dependence, important in predicting the behaviour of yet unstudied systems and validating reaction mechanisms. General Aspects of the Chemistry of Radicals is written for researchers working in environmental and material sciences, organic, inorganic and physical organic chemistry. It will also be of interest to biochemists and molecular biologists working with the effects of free radicals on living systems.
This book discusses the scientific mechanism of copper electrodeposition and it's wide range of applications. The book will cover everything from the basic fundamentals to practical applications. In addition, the book will also cover important topics such as: * ULSI wiring material based upon copper nanowiring * Printed circuit boards * Stacked semiconductors * Through Silicon Via * Smooth copper foil for Lithium-Ion battery electrodes. This book is ideal for nanotechnologists, industry professionals, and practitioners.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. |
![]() ![]() You may like...
The Bird and the Bell - With Other Poems
Christopher Pearse Cranch
Paperback
R537
Discovery Miles 5 370
Integrating Total Quality Management in…
Susan Jurow, Susan Barnard
Paperback
R2,085
Discovery Miles 20 850
|