Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. n each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
This thesis gives a thorough account of the development of iron-catalysed hydrosilylation, hydroboration and hydromagnesiation reactions. With extraordinary referencing and scientific argument, Mark Greenhalgh describes the development of methodologies which require only commercially available materials and non-specialised techniques. The intention of this approach is to ensure the science can be adopted widely by the chemical community. In addition to an insight into the processes involved in methodology development, Greenhalgh discusses and determines the relevant reaction mechanisms. This thesis provides not only the most thorough review of the area, but offers a level of insight well beyond that expected from a Ph.D. student. The work in this thesis has been published at the highest level, and the results and ideas have led to 3 industry-funded Ph.D. studentships and grant income in excess of GBP1 million.
In this thesis, Till Cremer investigates the bulk properties of ionic liquids (IL), the IL/vacuum interface and the IL/solid interface. For these studies the author primarily uses angle-resolved X-ray photoelectron spectroscopy under ultrahigh vacuum conditions. ILs represent a class of materials with unique physico-chemical properties. Many applications take advantage of the extremely low vapor pressure of aprotic ILs to fabricate permanent, non-volatile liquid coatings on solid materials. The author focuses on issues related to thin IL coatings, in particular concerning new catalytic concepts such as the supported ionic liquid phase (SILP) and solid catalyst with ionic liquid layer (SCILL) systems. Till Cremer presents a number of fundamental contributions to the new field of "Ionic Liquid Surface and Interface Science". Highlights are his results concerning anion/cation-interactions and the growth of ultrathin layers of ionic liquids on various substrates in the context of supported ionic liquid catalysis. His results have significantly contributed to the present level of understanding in the field and accordingly he is author and coauthor of ten publications on the topic in high-ranked journals.
Introduction and Overview (R.Z. Bachrach). Advances from a Technique Perspective: Absorption: Surface Absorption Near Edge Structure: XANES (A. Bianconi, A. Marcelli). Surface EXAFS (J.E. Rowe). Photoemission Spectroscopy: Angle Resolved Photoemission (W. Eberhardt). Surface Core Level Spectroscopy (A. Flodstrom et al.). Resonant Photoemission (J.W. Allen). Ion Spectroscopy: Photon Stimulated Desorption (V. Rehn, R.A. Rosenberg). Diffraction and Scattering: Grazing Incidence XRay Scattering (P.H. Fouss et al.). Photo and Auger Electron Diffraction (C.S. Fadley). Index.
Advances in Quantum Chemistry presents surveys of current
developments in this rapidly developing field that falls between
the historically established areas of mathematics, physics,
chemistry, and biology. With invited reviews written by leading
international researchers, each presenting new results, it provides
a single vehicle for following progress in this interdisciplinary
area.
In this thesis, real-time evolution of the nanopore channel growth and self-ordering process in anodic nanoporous alumina are simulated on the basis of an established kinetics model. The simulation results were in accordance with the experiments on the (i) growth sustainability of pore channels guided by pre-patterns; and (ii) substrate grain orientation dependence on self-ordering. In addition, a new fabrication method for the rapid synthesis of highly self-ordered nanoporous alumina is established, based on a systematic search for the self-ordering conditions in experiments. Lastly, it reports on a novel surface-charge induced strain in nanoporous alumina-aluminium foils, which indicates that nanoporous alumina can be used as a new type of actuating material in micro-actuator applications.
This book provides the reader with the latest directions in the field of homogeneous catalysts for fine chemical production. Each theme is introduced from a broad perspective: materials, strategies, techniques and processes are presented both from a theoretical and a practical point of view. The focus is on those catalysts - particularly heterogenized homogeneous catalysts - and applications leading to the production of fine and speciality chemicals in a highly selective manner and with minimal environmental and economic impact. Each topic is treated critically so topics such as factors affecting the catalysts performance, the influence of the support, the catalysts' deactivation, the metal leaching or the issues on recycling are analyzed. Industrial and academic points of view are integrated and the feasibility and timeliness of industrial applications are illustrated. The reader is also provided with a comparison between parent heterogeneous and homogeneous systems. Content Level Research
Volume 2 of Formulation Science and Technology is a survey of the different types of formulations used in the chemical industry and offers numerous real-world examples of foams, gels, latexes etc. It offers in-depth explanations for research scientists, universities, and industry practitioners looking for a complete understanding of which type formulation works best for a certain application and why.
This monograph describes metabolic and transport reactions of muscle cells using the laws of chemical thermodynamics. In particular, the thermodynamics of irreversible processes are used to formulate coupled reactions and their outcome on steady state cycling. The effects of ATP cycling on energy metabolism and heat production is described. The results of mathematical simulations of metabolism are used to underline theoretical approaches.
This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.
This thesis presents a highly innovative study of the ultrafast structural and vibrational dynamics of hydrated phospholipids, the basic constituents of cell membranes. As a novel approach to the water-phospholipid interface, the author studies phosphate vibrations using the most advanced methods of nonlinear vibrational spectroscopy, including femtosecond two-dimensional infrared spectroscopy. He shows for the first time that the structure of interfacial water undergoes very limited fluctuations on a 300 fs time scale and that the lifetimes of hydrogen bonds with the phospholipid are typically longer than 10 ps. Such properties originate from the steric hindrance of water fluctuations at the interface and the orienting action of strong electric fields from the phospholipid head group dipoles. In an extensive series of additional experiments, the vibrational lifetimes of the different vibrations and the processes of energy dissipation are elucidated in detail.
This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles-highlighting the interfacial phenomena and the corresponding interactions between particles. The book's central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between aggregates. It is illustrated how such knowledge may significantly enhance the characterisation of colloidal suspensions. The final part of the book refers to the information, ideas and concepts already presented in order to address technical aspects of the preparation of colloidal suspensions-in particular the performance of relevant dispersion techniques and the stability of colloidal suspensions.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes for example,such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. Photochemistry reviews photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, Photochemistry comprises sections sub-divided by chromophore and reaction type, and also a comprehensive section on polymer photochemistry.Throughout, emphasis is placed on useful applications of photochemistry.
The quantum and relativity theories of physics are considered to underpin all of science in an absolute sense. This monograph argues against this proposition primarily on the basis of the two theories' incompatibility and of some untenable philosophical implications of the quantum model. Elementary matter is assumed in both theories to occur as zero-dimensional point particles. In relativity theory this requires the space-like region of the underlying Minkowski space-time to be rejected as unphysical, despite its precise mathematical characterization. In quantum theory it leads to an incomprehensible interpretation of the wave nature of matter in terms of a probability function and the equally obscure concept of wave-particle duality. The most worrisome aspect about quantum mechanics as a theory of chemistry is its total inability, despite unsubstantiated claims to the contrary, to account for the fundamental concepts of electron spin, molecular structure, and the periodic table of the elements. A remedy of all these defects by reformulation of both theories as nonlinear wave models in four-dimensional space-time is described.
Electrocatalysts are the heart of power devices where electricity is produced via conversion of chemical into electrical energy. - pressive advances in surface science techniques and in first pr- ciples computational design are providing new avenues for signi- cant improvement of the overall efficiencies of such power dev- es, especially because of an increase in the understanding of el- trocatalytic materials and processes. For example, the devel- ment of high resolution instrumentation including various electron and ion-scattering and in-situ synchrotron spectroscopies, elect- chemical scanning tunneling microscopy, and a plethora of new developments in analytical chemistry and electrochemical te- niques, permits the detailed characterization of atomic distribution, before, during, and after a reaction takes place, giving unpre- dented information about the status of the catalyst during the re- tion, and most importantly the time evolution of the exposed ca- lytic surfaces at the atomistic level. These techniques are c- plemented by the use of ab initio methods which do not require input from experimental information, and are based on numerical solutions of the time-independent Schrodinger equation including electron-electron and electron-atom interactions. These fir- principles computational methods have reached a degree of - turity such that their use to provide guidelines for interpretation of experiments and for materials design has become a routine practice in academic and industrial communities.
Chemical Modelling: Applications and Theory comprises critical literature reviews of all aspects of molecular modelling. Molecular modelling in this context refers to modelliing the structure, properties and reactions of atoms, molecules and materials. Each chapter provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area.
Describes the relations between reactions in chemical and biochemical systems with special emphasis to high selective oxidation reactions by hydrogen peroxide.
This book discusses the scientific mechanism of copper electrodeposition and it's wide range of applications. The book will cover everything from the basic fundamentals to practical applications. In addition, the book will also cover important topics such as: * ULSI wiring material based upon copper nanowiring * Printed circuit boards * Stacked semiconductors * Through Silicon Via * Smooth copper foil for Lithium-Ion battery electrodes. This book is ideal for nanotechnologists, industry professionals, and practitioners.
This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade - which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world's leading experts on Li-ion batteries and vehicles.
Polyatomic Ion Dissociative Recombination; D.R. Bates. Recent Developments and Perspectives in the Treatment of Dissociative Recombination and Related Processes; A. Guisti-Suzor, et al. Electron-Ion Continuum-Continuum Mixing in Dissociative Recombination; S.L. Guberman. Recent Merged Beam Investigations of Hydrogen Molecular Ion Recombination; J.B.A. Mitchell, et al. Recent Flowing Afterglow Measurements; B.R. Rowe. Recombination of Cluster Ions; R. Johnsen. Associative Ionization of Hydrogen; F. Brouillard, X. Urbain. Resonant Theory of Dissociative Attachment; I.I. Fabrikant. Dissociative Recombination in Planetary Ionospheres; J.L. Fox. Chemistry of Supernova 1987a; A. Dalgarno. Factoring Sequences of Dynamic Processes in a Single Collision; F.H. Mies. Dissociative Electron Attachment to TransitionMetal Hydrides; T.M. Miller, et al. Electron Impact Dissociative Excitation of Molecular Ions; A.E. Orel. 17 additional articles. Index.
Amit Agarwal's thesis reports a substantial contribution to the microscopic simulation of radiation chemical reactions. In his research Agarwal extends existing models to further understand scavenging, spin and relaxation effects. This research has advanced the development of both the Monte Carlo Random Flights and the Independent Reaction Times (IRT) simulation tools. Particular highlights are the extension of these tools to include both the spin-exchange interaction and spin relaxation, both of which are influential in radiolytic systems where many reactions are spin-controlled. In addition, the study has led to the discovery of a novel correlation of the scavenging rate with the recombination time in low permittivity solvents. This finding goes against existing assumptions underlying the theory of diffusion kinetics while still being accommodated in the IRT method which demonstrates the power of this unconventional approach. The work in this thesis can be applied to a wide number of fields including the nuclear industry, medicine, food treatment, polymer curing, the preparation of nano-colloids, power generation and waste disposal.
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given. "Conducting Polymer Hybrids" is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel. |
You may like...
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,763
Discovery Miles 17 630
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,773
Discovery Miles 57 730
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R3,983
Discovery Miles 39 830
Metal-Catalyzed Asymmetric…
Montserrat Dieguez, Antonio Pizzano
Hardcover
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,335
Discovery Miles 23 350
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,781
Discovery Miles 47 810
Pioneers of Quantum Chemistry
E. Thomas Strom, Angela K. Wilson
Hardcover
R5,418
Discovery Miles 54 180
|