![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This thesis describes a series of investigations designed to assess the value of metalloenzymes in systems for artificial and adapted photosynthesis. The research presented explores the interplay between inherent enzyme properties such as structure, rates and thermodynamics, and the properties of the semiconducting materials to which the enzyme is attached. Author, Andreas Bachmeier provides a comprehensive introduction to the interdisciplinary field of artificial photosynthesis, allowing the reader to grasp the latest approaches being investigated, from molecular systems to heterogeneous surface catalysis. Bachmeier's work also uses metalloenzymes to highlight the importance of reversible catalysts in removing the burden of poor electrocatalytic rates and efficiencies which are common characteristics for most artificial photosynthesis systems. Overall, this thesis provides newcomers and students in the field with evidence that metalloenzymes can be used to establish new directions in artificial photosynthesis research.
This unique book presents a systematic review of the methods for the determination of binding constants of complex formation in solution. Collects material that has been scattered throughout the literature of several separate fields. Offered here are methods from the areas of acid-base chemistry, metal-ion coordination compounds, hydrogen-bonding, charge-transfer complexation, hydrophobic interaction, and protein-binding. Discusses the relevant thermodynamics, modelling, statistics and regression analysis, and interpretation of data. Includes fresh discussions of random association (contact complexes), selection of standard states, and comparison of results. Treats all of the experimental methods useful for measuring these equilibrium constants, including those based on spectrophotometry, nuclear magnetic resonance, reaction kinetics, potentiometry, solubility, liquid-liquid partitioning, dialysis, chromatography, flourimetry, and many others.
This book presents a detailed history of chemical warfare development during the First World War and discusses design approaches to gas masks and the performance of new filter materials that decontaminate chemical warfare agents (CWA) when applied in the vapor phase. It describes multifunctional nanocomposites containing zinc and zirconium (hydr)oxides, graphite oxide and silver or gold nanoparticles as reactive adsorbents for the degradation of the CWAs vapors. In addition it examines in detail the surface properties that are most important in the mineralization performance.
Niels Bohr and the Quantum Atom is the first book that focuses in detail on the birth and development of Bohr's atomic theory and gives a comprehensive picture of it. At the same time it offers new insight into Bohr's peculiar way of thinking, what Einstein once called his 'unique instinct and tact'. Contrary to most other accounts of the Bohr atom, the book presents it in a broader perspective which includes the reception among other scientists and the criticism launched against it by scientists of a more conservative inclination. Moreover, it discusses the theory as Bohr originally conceived it, namely, as an ambitious theory covering the structure of atoms as well as molecules. By discussing the theory in its entirety it becomes possible to understand why it developed as it did and thereby to use it as an example of the dynamics of scientific theories.
Introduction to Cake Filtration presents a comprehensive account of cake filtration studies including analyses of cake formation and growth, results of filtration experiments and data interpretation, measurements and determinations of filtercake properties, and incorporation of cake filtration theories to the analysis of several solid fluid separation processes. It aims at providing the necessary information to prepare people planning to undertake cake filtration work beyond the elementary level. In particular, it is hoped that this book will be helpful to individuals who are interested in cake filtration research and development quickly on track.
Photochromism is the reversible phototransformation of a chemical species between two forms having different absorption spectra. During the phototransformation not only the absorption spectra but also various physicochemical properties change, such as the refractive index, dielectric constant, oxidation/reduction potential, and geometrical structure. The property changes can be applied to photonic equipment such as erasable memory media, photo-optical switch components, and display devices. This book compiles the accomplishments of the research project titled "New Frontiers in Photochromism" supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The project focused not only on the above-mentioned classical subjects in photochromism, such as color changes, optical memory, and optical switches, but also on fundamental physicochemical studies and unprecedented application fields that have not yet been explored in photochromism. The latter topics include light-driven mechanical motion, photocontrol of surface wettability, metal deposition on solid materials, photocontrol of chiral properties, ultrafast decoloration dyes, and femtosecond laser experiments, among others.
This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
The present volume is a collection of review articles highlighting the fundamental advances made in this area by the internationally acclaimed research groups , most of them being pioneers themselves and coming together for the first time.
Volume 4 of Formulation Science and Technology is a survey of the applications of formulations in a variety of fields, based on the theories presented in Volumes 1 and 2. It offers in-depth explanations and a wealth of real-world examples for research scientists, universities, and industry practitioners in the fields of Agrochemicals, Paints and Coatings and Food Colloids.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.
High-temperature and high-pressure treatment of diamond is becoming an important technology to elaborate diamonds. This is the first book providing a comprehensive review of the properties of HPHT-treated diamonds, based on the analysis of published data and the work of the authors. The book gives a detailed analysis of the physics of transformation of internal structures of diamonds subjected to HPHT treatment and discusses how these transformations can be detected using methods of optical microscopy and spectroscopy. It also gives practical recommendations for the recognition of HPHT-treated diamonds. The book is written in a language and terms which can be understood by a broad audience of physicists, mineralogists and gemologists.
Volume 3 of Formulation Science and Technology is a survey of the applications of formulations in a variety of fields, based on the theories presented in Volumes 1 and 2. It offers in-depth explanations and a wealth of real-world examples for research scientists, universities, and industry practitioners in the fields of Pharmaceuticals, Cosmetics and Personal Care.
This book presents 50 selected peer-reviewed reports from the 2016 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2016 (Surabaya, Indonesia, 19-22 July, 2016). The Proceedings are devoted to processing techniques, physics, mechanics, and applications of advanced materials. As such, they examine a wide spectrum of nanostructures, ferroelectric crystals, materials and composites, as well as other promising materials with special properties. They present nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques, and physical and mechanical studies of the structural and physical-mechanical properties of the materials discussed. Further, a broad range of original mathematical and numerical methods is applied to solve various technological, mechanical and physical problems, which are inte resting for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc., which show improved characteristics, defined by the developed materials and composites, opening new possibilities to study different physico-mechanical processes and phenomena.
"EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. "presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. "EPR of Free Radicals in Solids I "focuses on the trends in experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques. It presents simulation techniques and software for CW and pulsed EPR as well as studies of quantum effects at low temperature. The chapters dealing with quantum chemistry methods for the theoretical interpretation of hyperfine coupling tensors and g-tensors have been much extended in this edition and a new chapter on the calculation of zero-field splitting tensors has been added. This new edition is a valuable resource to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemistry, chemical physics, materials science, biophysics, biochemistry and related fields. This new edition is a valuable resource to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemistry, chemical physics, materials science, biophysics, biochemistry and related fields."
This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.
Molecular Electronic Junction Transport: Some Pathways and Some Ideas, by Gemma C. Solomon, Carmen Herrmann and Mark A. Ratner Unimolecular Electronic Devices, by Robert M. Metzger and Daniell L. Mattern Active and Non-Active Large-Area Metal Molecules Metal Junctions, by Barbara Branchi, Felice C. Simeone and Maria A. Rampi Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface, by Chen Li, Artem Mishchenko and Thomas Wandlowski Tunneling Spectroscopy of Organic Monolayers and Single Molecules, by K. W. Hipps Single Molecule Logical Devices, by Nicolas Renaud, Mohamed Hliwa and Christian Joachim"
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book presents a range of nanocatalysts, together with their primary environmental applications and use in chemical production processes. In addition, it describes the nanomaterials used for catalysts and details their performance. The book introduces readers to the fundamentals and applications of nanocatalysis, synthesis, characterization, modification and application. Further topics include: landfill organic pollutant photodegradation; magnetic photocatalysis; synergistic effects on hydrogenated TiO2; and photoinduced fusion of gold-semiconductor nanoparticles. A detailed explanation of the chemistry of nanostructures and the ability to control materials at the nano-scale rounds out the coverage. Given the central importance of research in nanotechnology and nanoscience for the development of new catalysts, the book offers a valuable source of information for researchers and academics alike. It will also benefit industrial engineers and production managers who wish to understand the environmental impact of nanocatalysts.
This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is needed in order to select the appropriate higher level approach since most higher level models are designed to describe improvements to some reasonable zeroth order wave function. Consequently, most of the chapters in this volume begin with experimental facts and model functions and then progress to higher level theory only when quantitative results are required.In the first chapter, Zimmerman discusses a wide variety of thermal and photochemical reactions of organic molecules. Gronert discusses the use of ab initio calculations and experimental facts in deciphering the mechanism of -elimination reactions in the gas phase. Bettinger et al focus on carbene structures and reactions with comparison of the triplet and singlet states. Next, Hrovat and Borden discuss more general molecules with competitive triplet and singlet contenders for the ground state structure. Cave explains the difficulties and considerations involved with many of the methods and illustrates the difficulties by comparing with the UV spectra of short polyenes. Jordan et al discuss long-range electron transfer using model compounds and model Hamiltonians. Finally, Hiberty discusses the breathing orbital valence bond model as a different approach to introducing the crucial correlation that is known to be important in organic reactions.
Batteries that can store electricity from solar and wind generation farms are a key component of a sustainable energy strategy. Featuring 15 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, this book presents a wide range of battery types and components, from nanocarbons for supercapacitors to lead acid battery systems and technology. Worldwide experts provides a snapshot-in-time of the state-of-the art in battery-related R&D, with a particular focus on rechargeable batteries. Such batteries can store electrical energy generated by renewable energy sources such as solar, wind, and hydropower installations with high efficiency and release it on demand. They are efficient, non-polluting, self-contained devices, and their components can be recovered and used to recreate battery systems. Coverage also highlights the significant efforts currently underway to adapt battery technology to power cars, trucks and buses in order to eliminate pollution from petroleum combustion. Written for an audience of undergraduate and graduate students, researchers, and industry experts, Batteries for Sustainability is an invaluable one-stop reference to this essential area of energy technology.
This thesis addresses the introduction of redox mediator into lithium-oxygen batteries to improve their electrochemical performance especially in terms of practical energy density and round-trip efficiency. In chapter 1, basic electrochemistry regarding lithium-oxygen batteries and redox mediators are introduced. In chapter 2 to 4, comprehensive researches including the discovery of a new redox mediator inspired by biological system, the investigation on kinetic property of redox mediator, and the prevention of shuttle phenomenon are introduced, followed by chapter 5 summarizing the contents. This thesis is targeted to students and researchers interested in electrochemistry and energy storage systems.
This dissertation contributes to the understanding of fundamental
issues in the highly interdisciplinary field of colloidal science.
Beyond colloid science, the system also serves as a model for
studying interactions in biological matter. |
![]() ![]() You may like...
The Belt and Road Initiative - Legal…
Permanent Forum of China Construction Law
Hardcover
R5,571
Discovery Miles 55 710
A Guide to the SIAC Arbitration Rules
John Choong, Mark Mangan, …
Hardcover
R7,243
Discovery Miles 72 430
The International Court of Justice - An…
Serena Forlati
Hardcover
New Perspectives Collection, Microsoft…
Cengage Cengage
Paperback
Shelly Cashman Series Microsoft…
Misty Vermaat, Ellen Monk, …
Paperback
International Dispute Settlement: Room…
Rudiger Wolfrum, Ina Gatzschmann
Hardcover
A Guide to the PCA Arbitration Rules
Brooks Daly, Evgeniya Goriatcheva, …
Hardcover
R8,499
Discovery Miles 84 990
|