![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. n each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
Despite the fact that chemical applications of ultrasound are now widely acknowledged, a detailed presentation of inorganic systems covering nano-particles, catalysis, aqueous chemistry of metallic solutions and their redox characteristics, both from a theoretical and experimental perspective has eluded researchers of this field. "Theoretical and Experimental Sonochemistry Involving Inorganic Systems" fills this gap and presents a concise and thorough review of this fascinating area of Sonochemistry in a single volume.
Catalysis is the acceleration of a chemical reaction by a catalyst,
a substance that notably affects the rate of a chemical reaction
without itself being consumed or altered. Since 1948, "Advances in
Catalysis" has filled the gap between the papers that report on and
the textbooks that teach in the diverse areas of catalysis
research. The editors of and contributors to "Advances in
Catalysis" are dedicated to recording progress in this area.
Bruce Yoder's thesis outlines his investigation of the dissociative chemisorption of methane (CH4) on a nickel single crystal. In this work Bruce uses a molecular beam and infrared laser techniques to prepare methane in excited rovibrational states. The excited methane molecules are aligned relative to the target nickel surface. Bruce describes the discovery and exploration of a previously unknown steric effect in the dissociation reaction between a vibrationally excited methane molecule and a nickel crystal. From these studies we see that methane molecules are up to twice as reactive when the vibration is aligned parallel rather than perpendicular to the surface. This discovery will help guide the development of detailed predictive models of methane chemisorption, which in turn may lead to better catalysts for the synthesis of several industrially relevant chemicals, including hydrogen fuel from natural gas.
The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but also field operators, as a useful resource for the safe handling of flammable gases and liquids. It will be useful to anyone who worries about the ignition potential of a flammable mixture.
This thesis focuses on the bottom-up design, construction and operation of supramolecular systems capable of behaving as devices and machines on the molecular scale, which is a topic of great interest in nanoscience and a fascinating challenge in nanotechnology. In particular, the systems investigated here include: polyviologen dendrimers capable of behaving as hosts and chargestoring devices; molecular machines based on pseudorotaxanes/rotaxanes and operated by photoinduced proton transfer, or photoisomerization reactions; and a simple unimolecular multiplexer/demultiplexer. The systems have been characterized using a variety of techniques including absorption and emission spectra, laser flash photolysis, NMR spectroscopy, electrochemical experiments, stopped flow measurements. This research addresses a large number of open problems in the nanosciences, dealing with a wide range of the most advanced applications of supramolecular systems.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.
Fulleranes are a special class of carbon molecules derived from fullerenes whose double bonds are partially or at least theoretically fully saturated by hydrogen. The hydrogenation changes the chemical properties of fullerenes which can become susceptible to substitution reactions as opposed to addition reactions to the double bonds (present in common fullerenes). One of the most intriguing aspects of fulleranes is the fact that they have been thought to exist in the interstellar medium or even in certain circumstellar media. "Fulleranes: The Hydrogenated Fullerenes" presents the state of the art research, synthesis and properties of these molecules.This book also includes astrophysicists' and astrochemists' expectations regarding the presence of these molecules in space.
The understanding in science implies insights from several different points of view. Alternative modern outlooks on electronic structure of atoms and molecules, all rooted in quantum mechanics, are presented in a single text. Together these complementary perspectives provide a deeper understanding of the localization of electrons and bonds, the origins of chemical interaction and reactivity behavior, the interaction between the geometric and electronic structure of molecules, etc. In the opening two parts the basic principles and techniques of the contemporary computational and conceptual quantum chemistry are presented, within both the wave-function and electron-density theories. This background material is followed by a discussion of chemical concepts, including stages of the bond-formation processes, chemical valence and bond-multiplicity indices, the hardness/softness descriptors of molecules and reactants, and general chemical reactivity/stability principles. The insights from Information Theory, the basic elements of which are briefly introduced, including the entropic origins and Orbital Communication Theory of the chemical bond, are the subject of Part IV. The importance of the non-additive (interference) information tools in exploring patterns of chemical bonds and their covalent and ionic components will be emphasized.
Thisbookistalkingabouthowtousesupercriticalwater(SCW)torapidlyproduce micro- and nano-particles of metal oxides, inorganic salts, metals and organics. Itcoversbasicprinciples,experimentalmethodologiesandreactors,particlep- duction,characterizationsandapplicationsaswellastherecentadvancement. Fine particlescanbeproducedbybothchemicalandphysicalprecipitationofproducts from SCW. They can be used as catalysts, materials in ceramics and electronic devices andcompositematerials. Particlesareeasilyproduced continuouslyina owreactorinshortreactiontimes(0. 4s?2min)butcanalsobesynthesizedin batchreactorsforlongreactiontimes(e. g. ,12h). Theycanbeeasilystudiedin-situ microscopically(optical/IR/Raman/SR-XRD)inanopticalmicro-reactor,diamond anvilcell. Thesize,sizedistribution,crystalgrowth&structure,andmorphologyof particlescanbecontrolledbychangingtheconcentrationsofstatingmaterials,pH, pressures,temperatures,heating&coolingrates,organicmodi cations,reducingor oxidizingatmospheres, owratesandreactiontimes. Thisisthe rstbooktosystematicallyintroduceusingSCWforproductionof neparticles. Itisanidealreferencebookforengineers,researchersandgraduate studentsinmaterialscienceandengineering. vii Acknowledgments I would like to thank Drs. T. Ogi & T. Minowa (Biomass Technology Research Center,NationalInstituteofAdvancedIndustrialScienceandTechnology,Japan), and Profs. K. Arai, H. Inomata, R. L. Smith Jr. and T. Adschiri (Chemical Engineering,TohokuUniversity,Japan),whoinitiallyintroducedthehydrothermal andsupercritical uidsareastomewhenIworkedinJapanfrom1996to1999. Thanks are also due to Profs. J. A. Kozinski, R. I. L. Guthrie (Materials Engineering,McGillUniversity,Canada)andI. S. Butler(Chemistry,McGill)for theirguidanceinmyworkonhydrothermalprocessduringmyworkinCanadafrom 1999to2007. Profs. W. Bassett (Geological Sciences, Cornell University) and D. Baker (Earth&PlanetarySciences,McGill)forinstructionsregardingDAC,Dr. I-Ming Chou(U. S. GeologicalSurvey)forusefuldiscussionsofthepressurecalculation procedure. Drs. M. Watanabe and T. Sato (Research Center of Supercritical Fluid Technology, Tohoku University, Japan) for discussions about the experimental set-upofthebatchand owreactors. Drs. S. Xu,H. Assaaoudi,R. HashaikehandA. Sobhy,whoworkedwithmeat McGillinCanada. ix Contents 1 Introduction...1 1. 1 Background ...1 1. 2 RapidExpansionofSupercriticalSolution(RESS)Process ...4 1. 3 SupercriticalAntisolvent(SAS)Process ...4 1. 4 OtherPhysicalProcesses ...5 1. 5 SupercriticalWaterProcess ...5 References...8 2 Supercritical Water Process...11 2. 1 Introduction ...11 2. 2 BatchReactor ...15 2. 3 FlowReactor...18 2. 4 DiamondAnvilCell(DAC)...20 References...25 3 Metal Oxides Synthesis...29 3. 1 Introduction ...29 3. 2 Boehmite(AlOOH) ...30 3. 3 Ferrites...31 3. 4 Phosphor(YAG) ...32 3. 5 LiCoO /LiMn O ...33 2 2 4 3. 6 Ce Zr O (x =0?1)...33 1?x x 2 3. 7 PotassiumHexatitanate,PotassiumNiobateandTitania ...35 3. 8 ZincOxide...38 3. 9 Nickel,Nickel/CobaltOxide...
This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential ( 3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Rapid evolution of trade, cultural and human relations provides the qualitative and quantitative enhancement of international collaborations, linking the countries with different economical and technological level. Delocalization of High-Tech industry inevitably leads to development of the material science and engineering researches in emergent countries, requiring transfer of know-how, restructuration of basic research and educational networks. This book presents the contributions of participants of the Advanced Research Workshop "Smart Materials for Energy, Communications and Security" (ARW SMECS; www.smecs.ferroix.net), organized in December 2007 in Marrakech in frame of the "NATO - Science for Peace" program. The objective of this event was the attempt to overview several hot topics of material physics related with problems of modern society: transformation and storage of energy, treatment and transmission of information, environmental security issues etc., with the focus of their implementation in Mediterranean Dialogue (MD) countries: Algeria, Egypt, Mauritania, Morocco and Tunisia. The workshop is an important stage in developing of the research network "Mediterranean Electronic Materials" - MEM (www.reseau-MEM.org), that has an objective to encourage the inter-Maghreb and Europe-Maghreb collaborative studies in the area of electroactive materials. Participants of the Advanced Research Workshop "Smart Materials for Energy, Communications and Security" , Marrakech, Morocco, December 2007 v vi PREFACE
This and volume no. 47of "Modern Aspects of Electrochemistry" is composed of eight chapters covering topics having relevance both in corrosion science and materials engineering. In particular, the first seven chapters provide comprehensive coverage of recent advances in corrosion science."
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
This monograph describes metabolic and transport reactions of muscle cells using the laws of chemical thermodynamics. In particular, the thermodynamics of irreversible processes are used to formulate coupled reactions and their outcome on steady state cycling. The effects of ATP cycling on energy metabolism and heat production is described. The results of mathematical simulations of metabolism are used to underline theoretical approaches.
This book describes the fabrication of a frequency-based electronic tongue using a modified glassy carbon electrode (GCE), opening a new field of applying organic precursors to achieve nanostructure growth. It also presents a new approach to optimizing nanostructures by means of statistical analysis. The chemical vapor deposition (CVD) method was utilized to grow vertically aligned carbon nanotubes (CNTs) with various aspect ratios. To increase the graphitic ratio of synthesized CNTs, sequential experimental strategies based on response surface methodology were employed to investigate the crystallinity of CNTs. In the next step, glucose oxidase (GOx) was immobilized on the optimized multiwall carbon nanotubes/gelatin (MWCNTs/Gl) composite using the entrapment technique to achieve enzyme-catalyzed oxidation of glucose at anodic potentials, which was drop-casted onto the GCE. The modified GCE's performance indicates that a GOx/MWCNTs/Gl/GC electrode can be utilized as a glucose biosensor with a high direct electron transfer rate between GOx and MWCNTs/Gl. It was possible to use the fabricated biosensor as an electronic tongue thanks to a frequency-based circuit attached to the electrochemical cell. The results indicate that the modified GCE (with GOx/MWCNTs/Gl) holds promising potential for application in voltammetric electronic tongues.
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. For compounds with novel and exciting properties, a thorough analysis of experimental data - state-of-the-art spectroscopy, magnetism, thermodynamic properties and/or detailed mechanistic information - combined with sophisticated electronic structure calculations is p- formed to interpret the results and fully understand the structure, properties and their interrelation. From these analyses, new models and theories may emerge, and this has led to the development of ef cient models for the design and interpre- tion of new materials and important new experiments. The chapters in this book therefore describe various fundamental aspects of structures, dynamics and physics of molecules and materials. The approaches, data and models discussed include new theoretical developments, computational studies and experimental work from molecular chemistry to biology and materials science.
Computational methods, and in particular quantum chemistry, have taken the lead in our growing understanding of noncovalent forces, as well as in their categorization. This volume describes the current state of the art in terms of what we now know, and the current questions requiring answers in the future. Topics range from very strong (ionic) to very weak (CH-- ) interactions. In the intermediate regime, forces to be considered are H-bonds, particularly CH--O and OH--metal, halogen, chalcogen, pnicogen and tetrel bonds, aromatic stacking, dihydrogen bonds, and those involving radicals. Applications include drug development and predictions of crystal structure.
Green Chemistry in Practice: Greener Material and Chemical Innovation through Collaboration collects together a unique set of case studies based on researchers' experiences in developing practical, green chemistry-driven solutions to industry problems as part of the Greener Solutions Program at Berkeley Center for Green Chemistry. Beginning with an introduction to green chemistry, the book goes on to provide an overview of the interdisciplinary approach taken by the Center, which aims to bring about a generational transformation toward the design and use of inherently safer chemicals and materials through research, teaching and outreach. This is followed by four detailed case studies revealing each step of the process involved in assessing and designing greener solutions to real-world problems in the fields of preservatives, textiles, additive manufacturing, and green energy. Drawing together the hands-on, practical experience of an interdisciplinary team from across academia and industry, Practice in Green Chemistry provides a unique insight into the practicalities of applying green chemistry principles in support of a global push toward a more sustainable world.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.The individual volumes in the series are
thematic. The goal of each volume is to give the reader, whether at
a university or in industry, a comprehensive overview of an area
where new insights are emerging that are of interest to a larger
scientific audience. Thus each review within the volume critically
surveys one aspect of that topic and places it within the context
of the volume as a whole. The most significant developments of the
last 5 to 10 years should be presented using selected examples to
illustrate the principles discussed. A description of the physical
basis of the experimental techniques that have been used to provide
the primary data may also be appropriate, if it has not been
covered in detail elsewhere. The coverage need not be exhaustive in
data, but should rather be conceptual, concentrating on the new
principles being developed that will allow the reader, who is not a
specialist in the area covered, to understand the data presented.
Discussion of possible future research directions in the area is
welcomed. Review articles for the individual volumes are invited by
the volume editors.
This book is the translated and commented autobiography of Wilhelm Ostwald (1853-1932), who won the Nobel Prize for Chemistry in 1909. It is the first translation of the German original version "Lebenslinien: Eine Selbstbiographie," published by Ostwald in 1926/27, and has been painstakingly translated. The book includes comments and explanations, helping readers to understand Ostwald's text in the historical context of Germany at the beginning of the 20th century.In his autobiography, Ostwald describes his impressive research career and his life from his own personal view. Readers will find information on how Ostwald immortalized himself through his research on catalysis, chemical equilibria, technical chemistry, and especially as one of the founders of modern physical chemistry. His broad interests in science, ranging from philosophy to the theory of colors and the idea of a universal scientific language are further remarkable aspects covered.This work will appeal to a broad audience of contemporary scientists: Wilhelm Ostwald has been tremendously influential for the development of chemistry and science, and many of today's best-known international scientific schools can be traced back to Ostwald's students. Ostwald was active in Germany and what is now Latvia and Estonia, while also travelling to the USA, England and France. In his discussions and analyses of the working conditions of the time, readers will find many issues reflected that continue to be of relevance today.
This book presents an overview of fundamental aspects of surface-based biosensors and techniques for enhancing their detection sensitivity and speed. It focuses on rapid detection using miniaturized sensors and describes the physical principles of nanoscale transducers, surface modifications, microfluidics and reaction engineering, diffusion and kinetics. A key challenge in the field of bioanalytical sensors is the rapid delivery of target biomolecules to the sensing surface. While various nanostructures have shown great promise in sensitive detection, diffusion-limited binding of analyte molecules remains a fundamental problem. Recently, many researchers have put forward novel schemes to overcome this challenge, such as nanopore channels, electrokinetics, and dielectrophoresis, to name but a few. This book provides the readers an up-to-date account on these technological advances.
This volume analyzes and summarizes recent developments and breakthroughs in several key interfacial electrochemical systems in fuel cell electrocatatalysis. The chapters are written by internationally recognized experts or rising stars in electrocatatalysis addressing both the fundamental and practical aspects of several emerging key electrochemical technologies. |
You may like...
Observations on the American Treaty, in…
Thomas Peregrine Courtenay
Paperback
R374
Discovery Miles 3 740
Abnormal Psychology - An Integrative…
V. Durand, David Barlow, …
Paperback
(1)R930 Discovery Miles 9 300
A Discourse of the Death of John Quincy…
Leonard Elijah Lathrop
Paperback
R335
Discovery Miles 3 350
|