![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This book presents an overview of recent advances in our understanding of the genesis of diamonds and the associated phases. It is divided into three main parts, starting with an introduction to the analysis of diamond inclusions to infer the formation processes. In turn, the second part of the book presents high-pressure experimental studies in mantle diamond-parental mineral systems with representative multicomponent boundary compositions. The experimental syngenesis phase diagrams provided reveal the physicochemical mechanisms of diamond nucleation and substantiate the mantle-carbonatite concept of the genesis of diamonds and associated phases. Lastly, the book describes the genetic classification of diamond-hosted mineral inclusions and experimentally determined RE "mineral-parental melt" partition coefficients. The physicochemical experimental evidence presented shows the driving forces behind the fractional evolution of the mantle magmas and diamond-parental melts. Given the depth and breadth of its coverage, the book offers researchers essential new insights into the ways diamonds and associated minerals and rocks are naturally created.
Advances in Quantum Chemistry presents surveys of current
developments in this rapidly developing field that falls between
the historically established areas of mathematics, physics, and
chemistry. With invited reviews written by leading international
researchers, as well as regular thematic issues, each volume
presents new results and provides a single vehicle for following
progress in this interdisciplinary area.
I: Perfumery as An Art.- 1: The Art of Perfumery.- II: Perfumery as A Topic in Life Sciences.- 2: Odours and Perfumes as a System of Signs.- 3: Semiochemicals: Mevalogenins in Systems of Chemical Communication.- 4: Origin of Natural Odorants.- 5: A Consideration of Some Psychological and Physiological Mechanisms of Odor Perception.- III: Trapping and Measuring of Odours.- 6: The Measuring of Odors.- 7: Trapping, Investigation and Reconstitution of Flower Scents.- IV: Classification of Odours.- 8: Empirical Classification of Odours.- 9: Chemical Classification and Structure-Odour Relationships.- V: Compository Techniques and Application Segments.- 10: Creative Perfumery: Composition Techniques.- 11: Support Materials for Odorant Mixtures.- 12: Perfumery Applications: Functional Products.- 13: The Impact of Market Research.- VI: Production of Perfumes.- 14: The Chemistry of Synthetic Raw Materials Production.- 15: Compounding.- 16: The Toxicology and Safety of Fragrances.- 17: The Fragrance Industry in a Changing World.- VII: Topics in Perfumery Research.- 18: Receptors: Current Status and Future Directions.- 19: Natural Products.- 20: Synthetic Products.- Outlook.- List of Contributors.
This book presents recent research on Advanced Computing in Industrial Mathematics, which is one of the most prominent interdisciplinary areas and combines mathematics, computer science, scientific computations, engineering, physics, chemistry, medicine, etc. Further, the book presents the tools of Industrial Mathematics, which are based on mathematical models, and the corresponding computer codes, which are used to perform virtual experiments to obtain new data or to better understand the existing experimental results. The book gathers the peer-reviewed papers presented during the 10th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM) from December 21 to 22, 2015 in Sofia, Bulgaria.
The Role of Metals and Ligands in Organic Hydroformylation, by Luca Gonsalvi, Antonella Guerriero, Eric Monflier, Frederic Hapiot, Maurizio Peruzzini. Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors, by Frederic Hapiot, Herve Bricout, Sebastien Tilloy, Eric Monflier. Asymmetric Hydroformylation, by Bernabe F. Perandones, Cyril Godard, Carmen Claver. Domino Reactions Triggered by Hydroformylation, by Elena Petricci, Elena Cini. Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis, by Roberta Settambolo. Hydroformylation in Natural Product Synthesis, by Roderick W. Bates, Sivarajan Kasinathan."
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed. The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schroedinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.
The second edition of this textbook includes refined text in each chapter, new sections on corrosion of steel-reinforced concrete and on cathodic protection of steel reinforced bars embedded in concrete, and some new solved examples. The book introduces mathematical and engineering approximation schemes for describing the thermodynamics and kinetics of electrochemical systems, which are the essence of corrosion science, in addition to electrochemical corrosion, forms of corrosion and mechanisms of corrosion. This approach should capture the reader's attention on the complexity of corrosion. Thus, the principles of electrochemistry and electrochemical cells are subsequently characterized in simple electrolytes from a thermodynamics point of view.
First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes, by A. Jaramillo-Botero, R. Nielsen, R. Abrol, J. Su, T. Pascal, J. Mueller and W. A. Goddard.- Dynamic QM/MM: A Hybrid Approach to Simulating Gas Liquid Interactions, by S. Yockel and G. C. Schatz.- Multiscale Modelling in Computational Heterogeneous Catalysis, by F. J. Keil.- Real-World Predictions from Ab Initio Molecular Dynamics Simulations, by B. Kirchner, P. J. di Dio and J. Hutter.- Nanoscale Wetting Under Electric Field from Molecular Simulations, by C. D. Daub, D. Bratko and A. Luzar.- Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales, by J. L. Rafferty, J. I. Siepmann, M. R. Schure.- Thermodynamic Properties for Applications in Chemical Industry via Classical Force Fields, by G. Guevara-Carrion, H. Hasse and J. Vrabec.- Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes, by L. Delle Site, C. Holm and N. F. A. van der Vegt.- Coarse-Grained Modeling for Macromolecular Chemistry, by H. A. Karimi-Varzaneh and F. Muller-Plathe.-"
This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
Ionic Surfactants and Aqueous Solutions: Biomolecules, Metals and Nanoparticles covers a wide range of subjects related to aqueous systems, from reverse micelles as ion exchangers to the study of micellar phase transfer catalysis for nucleophilic substitution reactions. The diverse background, expertise and professional interests of the contributors to this book give to it a unique richness of approach in topics of relevance for biotechnology and environmental studies. Over sixty publications presenting research results are combined and expanded in this book by some of the original researchers. At a mature age, and at the summit of successful professional careers, they have taken a second look to the state of the art in the fields that they had pioneered. Eva Rodil and Ana Soto, who had their research formation in the group of Professor Alberto Arce at Universidade de Santiago de Compostela, Spain, are presently professors at that university, Maen Husein is a professor at University of Calgary, Canada. Remy Dumortier, Mohammad Khoshkbarchi, Hamid Rabie and Younok Dumortier Shin, are presently active leaders in the industrial world in Canada and the USA. The editors are retired academics from McGill University, Montreal, Canada, and coauthors of the book Classical Thermodynamics of Fluid Systems.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
Control over macromolecular architecture and resulting material properties has been a central goal of polymer chemistry. There has been much interest in developing new synthetic routes to prepare smart materials with novel compositions and topologies for various applications. The considerable progress in the metal mediated macromolecular engineering over the past decade has had a major impact on the development of well-defined macromolecular architectures and the synthesis of smart materials. Particularly, remarkable strong developments have been observed for the synthesis of smart materials via four metal mediated macromolecular engineering techniques; Anionic, ROMP, ATRP and Click Chemistry. These materials have found uses in advanced microelectronics, technical and biomedical applications as well as in chemical sensors applications. This book is comprised of 27 chapters written by leading scientists from NATO and Partner Countries who have greatly contributed in the area of Anionic, ROMP, ATRP and Click Chemistry. It highlights the fundamental aspects and recent developments of these four powerful techniques and evaluate their potential in the syntheses of smart materials from complex structures (grafts, brushes, dendrimers, etc.) to nanostructures (self-assembly, nano-size, etc) for a wide range of applications. The book reports on the synthesis of a wide range of well-defined complex polymeric systems such as thermoresponsive smart polymers, star copolymers, biocompatible polymers, amphipilic smart nano structured, conducting polymers, self assembled polymers, and hyperbranced polymers.
This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles oftuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the user."
This volume is meant as an introductory resource aimed at practitioners of electrochemistry research, technology and development mainly at the atomic, molecular or macromolecular levels. Emphasis is placed at length scales in the 1-100 nm range. The aim of the volume is to help provide understanding of electrochemical phenomena and materials at the nanoscale through modeling and numeric simulations. It is also designed to serve as a means to create and use structures.
In this volume expert researchers in the field detail the operations of microchip capillary electrophoresis. Chapters focus on small molecule, biomolecule applications, various detection modes, and sample preparation approaches are described. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microchip Capillary Electrophoresis Protocol aids scientists in continuing to study microchip capillary electrophoresis.
This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
-Encapsulation by Miniemulsion Polymerization By K. Landfester and C. K. Weiss -Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices By K. Ariga, Q. Ji, and J. P. Hill -Non-LBL Assembly and Encapsulation Uses 1 of Nanoparticle-Shelled Hollow Spheres 2 By G.C. Kini, S. L. Biswal, and M. S. Wong -Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery By M. Massignani, H. Lomas, and G. Battaglia -Reaction Vessels Assembled by the Sequential Adsorption of Polymers By A.D. Price, A.P.R. Johnston, G.K. Such, and F. Caruso
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field that falls between the historically established areas of mathematics, physics, chemistry, and biology. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area.
Using an in situ transmission electron microscopy (TEM) approach to investigate the growth mechanism of carbon nanotubes (CNTs) as well as the fabrication and properties of CNT-clamped metal atomic chains (MACs) is the focus of the research summarized in this thesis. The application of an in situ TEM approach in the above-mentioned research provides not only real-time observation but also monitored machining and structural evolvement at the atomic level. In this thesis, the author introduces a CNT tubular nano furnace that can be operated under TEM for investigation of the CNT nucleation mechanism. By studying the nucleation process of CNTs in the presence of various catalysts, including iron-based metallic catalysts and silicon oxide-based non-metallic catalysts, the physical states of the catalysts as well as the nucleation and growth process of CNTs are revealed. Based on the understanding of the nucleation mechanism, the author proposes a hetero-epitaxial growth strategy of CNTs from boron nitride, which provides a new route for the controllable growth of CNTs. In addition, the author presents an electron beam-assisted nanomachining technique and the fabrication of a CNT-clamped MAC prototype device based on this technique. The formation process of CNT-clamped Fe atomic chains (ACs) can be monitored with atomic resolution. The demonstrated quantized conductance and uninfluenced half-metallic properties of Fe ACs indicate that CNTs can be promising nanoscale electrodes or interconnectors for the linking and assembly of nano and subnano structures.
This book describes hydration structures of proteins by combining experimental results with theoretical considerations. It is designed to introduce graduate students and researchers to microscopic views of the interactions between water and biological macromolecules and to provide them with an overview of the field. Topics on protein hydration from the past 25 years are examined, most of which involve crystallography, fluorescence measurements, and molecular dynamics simulations. In X-ray crystallography and molecular dynamics simulations, recent advances have accelerated the study of hydration structures over the entire surface of proteins. Experimentally, crystal structure analysis at cryogenic temperatures is advantageous in terms of visualizing the positions of hydration water molecules on the surfaces of proteins in their frozen-hydrated crystals. A set of massive data regarding hydration sites on protein surfaces provides an appropriate basis, enabling us to identify statistically significant trends in geometrical characteristics. Trajectories obtained from molecular dynamics simulations illustrate the motion of water molecules in the vicinity of protein surfaces at sufficiently high spatial and temporal resolution to study the influences of hydration on protein motion. Together with the results and implications of these studies, the physical principles of the measurement and simulation of protein hydration are briefly summarized at an undergraduate level. Further, the author presents recent results from statistical approaches to characterizing hydrogen-bond geometry in local hydration structures of proteins. The book equips readers to better understand the structures and modes of interaction at the interface between water and proteins. Referred to as "hydration structures", they are the subject of much discussion, as they may help to answer the question of why water is indispensable for life at the molecular and atomic level.
Studies in Natural Products Chemistry, Volume 10: Stereoselective Synthesis (Part F) is a collection of articles about studies on important organic molecules. The book covers studies such as that on the synthesis of cembranes as well as its natural occurrence and bioactivity; the stereoselective synthesis of Vitamin D; the synthesis of isoquinolinequinone antibiotics; and the nucleophilic addition chemistry of polyunsaturated carbonyl compounds. Also covered in the book are subjects such as developments in the synthesis of medium ring ethers; the biological properties, chemistry, and synthesis of didemnins; and natural products synthesis based on novel ring transformation. The text is recommended for organic chemists who would like to know more about the progresses in the study of important organic molecules and their implications in different fields.
This work establishes linear-scaling density-functional theory (DFT) as a powerful tool for understanding enzyme catalysis, one that can complement quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations. The thesis reviews benchmark studies demonstrating techniques capable of simulating entire enzymes at the ab initio quantum-mechanical level of accuracy. DFT has transformed the physical sciences by allowing researchers to perform parameter-free quantum-mechanical calculations to predict a broad range of physical and chemical properties of materials. In principle, similar methods could be applied to biological problems. However, even the simplest biological systems contain many thousands of atoms and are characterized by extremely complex configuration spaces associated with a vast number of degrees of freedom. The development of linear-scaling density-functional codes makes biological molecules accessible to quantum-mechanical calculation, but has yet to resolve the complexity of the phase space. Furthermore, these calculations on systems containing up to 2,000 atoms can capture contributions to the energy that are not accounted for in QM/MM methods (for which the Nobel prize in Chemistry was awarded in 2013) and the results presented here reveal profound shortcomings in said methods. |
![]() ![]() You may like...
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,418
Discovery Miles 54 180
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,216
Discovery Miles 32 160
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,773
Discovery Miles 57 730
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,763
Discovery Miles 17 630
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,794
Discovery Miles 47 940
Application of Materials Science in the…
Marco Martini, Anna Galli
Hardcover
R1,300
Discovery Miles 13 000
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,789
Discovery Miles 47 890
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
|