![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This book presents an exhaustive overview of electrochemical sensors and biosensors for the analysis and monitoring of the most important analytes in the environmental field, in industry, in treatment plants and in environmental research. The chapters give the reader a comprehensive, state-of-the-art picture of the field of electrochemical sensors suitable to environmental analytes, from the theoretical principles of their design to their implementation, realization and application. The first three chapters discuss fundamentals, and the last three chapters cover the main groups of analytes of environmental interest.
Advances in Catalysis fills the gap between the journal papers
and the textbooks across the diverse areas of catalysis research.
For more than 60 years Advances in Catalysis has been dedicated to
recording progress in the field of catalysis and providing the
scientific community with comprehensive and authoritative reviews.
This series in invaluable to chemical engineers, physical chemists,
biochemists, researchers and industrial chemists working in the
fields of catalysis and materials chemistry. *In-depth, critical, state-of-the-art reviews * Comprehensive, coversof all aspects of catalysis research "
This volume explores some of the most exciting recent advances in
basic research on molecular assembly in natural and engineered
systems and how this knowledge is leading to advances in the
various fields.
The operation of everything in the universe needs a special "material"-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth's energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed.
EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. EPR of Free Radicals in Solids II focuses on the trends in applications of experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques in nine chapters written by experts in the field. It examines the studies involving radiation- and photo-induced inorganic and organic radicals in inert matrices, the high-spin molecules and metal-based molecular clusters as well as the radical pro-cesses in photosynthesis. Recent advancements in environmental applications in-cluding measurements by myon resonance of radicals on surfaces and by quantitative EPR in dosimetry are outlined and the applications of optical detection in material research with much increased sensitivity reviewed. The potential use of EPR in quantum computing is considered in a newly written chapter. This new edition is aimed to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemis-try, chemical physics, materials science, biophysics, biochemistry and related fields.
This book describes medical applications of photochemistry. In the first part, a general introduction to photochemistry and related phototechnologies is provided. In the second part, photochemistry-based medical applications for diagnostics (biochips and bioimaging) and therapeutics (biomaterials for artificial organs, medical adhesives, dental materials, drug-delivery systems, tissue engineering, and photodynamic therapy) are described, with examples of recent research. The year 2015 is the International Year of Light and Light-Based Technologies. Light plays a vital role in our daily lives and is important in many interdisciplinary scientific fields in the twenty-first century. Light-based concepts have revolutionized medicine, including areas such as oncology, molecular biology, and surgery. Although photochemistry has contributed significantly to medicine directly and through photochemical fabrication of biomaterials, a book giving a comprehensive overview of recent progress has not been published until now. The aim of this book is to highlight the contributions of photochemistry in interdisciplinary fields of chemistry and medical engineering. This book will be useful for chemists who are interested in medical applications of photochemistry and engineers who are eager to learn the principles of photochemistry to enable its use in practical applications.
The conventional solvents used in chemical, pharmaceutical, biomedical and separation processes represent a great challenge to green chemistry because of their toxicity and flammability. Since the beginning of "the 12 Principles of Green Chemistry" in 1998, a general effort has been made to replace conventional solvents with environmentally benign substitutes. Water has been the most popular choice so far, followed by ionic liquids, surfactant, supercritical fluids, fluorous solvents, liquid polymers, bio-solvents and switchable solvent systems. Green Solvents Volume I and II provides a throughout overview of the different types of solvents and discusses their extensive applications in fields such as extraction, organic synthesis, biocatalytic processes, production of fine chemicals, removal of hydrogen sulphide, biochemical transformations, composite material, energy storage devices and polymers. These volumes are written by leading international experts and cover all possible aspects of green solvents' properties and applications available in today's literature. Green Solvents Volume I and II is an invaluable guide to scientists, R&D industrial specialists, researchers, upper-level undergraduates and graduate students, Ph.D. scholars, college and university professors working in the field of chemistry and biochemistry.
Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
Reviews in Fluorescence 2016, the tenth volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Reviews in Fluorescence offers an essential reference material for any research lab or company working in the fluorescence field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of fluorescence will find it an invaluable resource.
This book presents nine chapters based on fundamental and applied research of alternative energies. At the present time, the challenge is that technology has to come up with solutions that can provide environmentally friendly energy supply options that are able to cover the current world energy demand. Experts around the world are working on these issues for providing new solutions that will break the existing technological barriers. This book aims to address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress for each pillar. It also includes the life cycle assessment (LCA) and thermoeconomic analysis (TA) as tools for evaluating and optimising environmental and cost subjects. Chapters are organized into fundamental research, applied research and future trends; and written for engineers, academic researches and scientists.
This book reflects the heights of knowledge of ultrafast chemical
processes attained in these early years of the 21st century: the
latest research in femtosecond and picosecond molecular processes
in Chemistry and Biology, carried out around the world, is
described here in more than 110 articles. The results were
presented and discussed at the VIth International Conference on
Femtochemistry, in Paris, France, from July 6 to July 10, 2003. The
articles published here were reviewed by referees selected from
specialists in the Femtochemistry community, guaranteeing a
collective responsability for the quality of the research reported
in the next 564 pages. Femtochemistry is an ever-growing field,
where new research areas are constantly opening up, and one which
both stimulates and accompanies the development of ultrafast
technologies.
The increase of greenhouse gases in the atmosphere and the decrease of the available amount of fossil fuels necessitate finding new alternative and sustainable energy sources in the near future. This book summarizes the role and the possibilities of catalysis in the production of new energy carriers and in the utilization of different energy sources. The main goal of this work is to go beyond those results discussed in recent literature by identifying new developments that may lead to breakthroughs in the production of alternative energy. The book discusses the use of biomass or biomass derived materials as energy sources, hydrogen formation in methanol and ethanol reforming, biodiesel production, and the utilization of biogases. Separate sections also deal with fuel cells, photocatalysis, and solar cells, which are all promising processes for energy production that depend heavily on catalysts.
This book introduces recent progress in stimuli-responsive interfaces constructed on colloidal materials such as micelles and vesicles and on solid material surfaces. There is discussion of the effect of stimuli such as light, heat, pH, and electric field on changes in the morphology of the molecules at the interfaces and that of colloidal materials. The changes in the properties, such as gelation ability, dispersibility, and emulsification ability, of the resultant bulk materials containing these colloidal materials or those of the solid material are also covered. In addition, design criteria for high sensitivity, quick responsiveness, and high reversibility are presented. In each author's original system, the correlations between molecular-level responses and bulk functional responses are described as well. This book serves as an excellent guide to designing and fabricating novel, functional, eco-friendly stimuli-responsive interfaces and related materials.
Fluorinated Liquid Crystals: Design of Soft Nanostructures and Increased Complexity of Self-Assembly by Perfluorinated Segments, by Carsten Tschierske Liquid Crystalline Crown Ethers, by Martin Kaller and Sabine Laschat Star-Shaped Mesogens - Hekates: The Most Basic Star Structure with Three Branches, by Matthias Lehmann DNA-Based Soft Phases, by Tommaso Bellini, Roberto Cerbino and Giuliano Zanchetta Polar and Apolar Columnar Phases Made of Bent-Core Mesogens, by N. Vaupotic, D. Pociecha and E. Gorecka Spontaneous Achiral Symmetry Breaking in Liquid Crystalline Phases, by H. Takezoe Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles, by Oana Stamatoiu, Javad Mirzaei, Xiang Feng and Torsten Hegmann Stimuli-Responsive Photoluminescent Liquid Crystals, by Shogo Yamane, Kana Tanabe, Yoshimitsu Sagara and Takashi Kato
Specialist Periodical Reports provide systematic and critical review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject, the series creates a unique service for the active research chemist with regular critical in-depth accounts of progress in particular areas of chemistry. Subject coverage of all volumes is very similar and publication is on an annual or biennial basis. There is an increasing challenge for chemical industry and research institutions to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis as well as specific applications of catalysis such as NOx control, kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields, and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Volume 21 covers literature published during 2006.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
In this thesis, Bernhard Schmidt describes his research into two fields in the chemical sciences: supramolecular and macromolecular chemistry. Schmidt first investigates cyclodextrins (CDs), which are well knowN for the formation of supramolecular host/guest complexes with hydrophobic molecules in aqueous solution. Schmidt then also examines reversible addition-fragmentation chain transfer (RAFT) polymerization as a well-suited toll for the synthesis of water-soluble end-functionalized polymers. The author skillfully combines both concepts as a powerful tool to access reversibly forming macromolecular architectures. The novel methods and architectures presented in this work are highly interesting from both a fundamental point of view as well as a basis for the design of efficient drug release systems. The work in this thesis has led to a number of publications in top peer-reviewed journals.
This book provides an easily understandable introduction to solid state physics for chemists and engineers. Band theory is introduced as an extension of molecular orbital theory, and its application to organic materials is described. Phenomena beyond band theory are treated in relation to magnetism and electron correlation, which are explained in terms of the valence bond theory and the Coulomb and exchange integrals. After the fundamental concepts of magnetism are outlined, the relation of correlation and superconductivity is described without assuming a knowledge of advanced physics. Molecular design of organic conductors and semiconductors is discussed from the standpoint of oxidation-reduction potentials, and after a brief survey of organic superconductors, various applications of organic semiconductor devices are described. This book will be useful not only for researchers but also for graduate students as a valuable reference.
This book presents studies and discussions on anionic redox, which can be used to boost the capacities of cathode electrodes by providing extra electron transfer. This theoretically and practically significant book facilitates the implementation of anionic redox in electrodes for real-world use and accelerates the development of high-energy-density lithium-ion batteries. Lithium-ion batteries, as energy storage systems, are playing a more and more important role in powering modern society. However, their energy density is still limited by the low specific capacity of the cathode electrodes. Based on a profound understanding of band theory, the author has achieved considerable advances in tuning the redox process of lithium-rich electrodes to obtain enhanced electrochemical performance, identifying both the stability mechanism of anionic redox in lithium-rich cathode materials, and its activation mechanism in these electrode systems.
The expected end of the "oil age" will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today's fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. Featuring 21 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, Fuel Cells offers concise yet comprehensive coverage of the current state of research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types, and discuss materials, components, and systems for these technologies. The entries also cover sustainability and marketing considerations, including comparisons of fuel cells with alternative technologies.
Lucas Montero de Espinosa and Michael A. R. Meier: Olefin Metathesis of Renewable Platform Chemicals.- Pieter C. A. Bruijnincx, Robin Jastrzebski, Peter J. C. Hausoul, Robertus J. M. Klein Gebbink, and Bert M. Weckhuysen: Pd-Catalysed Telomerisation of 1,3-Dienes with Multifunctional Renewable Substrates - Versatile Routes for the Valorisation of Biomass-Derived Platform Molecules.- A Behr, A. J. Vorholt: Hydroformylation and related reactions of renewable resources.- Ties J. Korstanje, Robertus J.M. Klein Gebbink: Catalytic oxidation and deoxygenation of renewables with rhenium complexes.- Antoine Buchard, Clare M. Bakewell, Jonathan Weiner and Charlotte K. Williams: Recent Developments In Catalytic Activation Of Renewable Resources For Polymer Synthesis.
Learning the basics of physical chemistry with a unique, innovative approach. Georg Job and Regina Rueffler introduce readers to an almost intuitive understanding of the two fundamental concepts, chemical potential and entropy. Avoiding complex mathematics, these concepts are illustrated with the help of numerous demonstration experiments. Using these concepts, the subjects of chemical equilibria, kinetics and electrochemistry are presented at an undergraduate level. The basic quantities and equations necessary for the qualitative and quantitative description of chemical transformations are introduced by using everyday experiences and particularly more than one hundred illustrative experiments, many presented online as videos. These are in turn supplemented by nearly 400 figures, and by learning objectives for each chapter. From a review of the German edition: "This book is the most revolutionary textbook on physical chemistry that has been published in the last few decades."
Electrochemical processes are long known but are becoming increasingly important again, due to modern applications, such as electro-mobility or energy storage. Thus, electrochemistry is not only a topic for chemists and physicists, but also for technical engineers. This book addresses all aspects of electrochemistry, which are important in these days: electrodes, corrosion, interphases, processes, energy storage, analytical methods, and sensors.
This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students. |
![]() ![]() You may like...
Reinhold and Fichte in Confrontation - A…
Martin Bondeli, Silvan Imhof
Hardcover
R4,802
Discovery Miles 48 020
Information Technology and Educational…
Arthur Tatnall, Javier Osorio, …
Hardcover
R3,008
Discovery Miles 30 080
Educational Recommender Systems and…
Olga C. Santos, Jesus G. Boticario
Hardcover
R4,843
Discovery Miles 48 430
Fighting for Rights - From Holy Wars to…
Tal Dingott Alkopher
Hardcover
R4,478
Discovery Miles 44 780
The Princess And The Sangoma - Kwasuka…
Dean White, Charles Siboto
Paperback
|