![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
"Organocatalyzed Reactions" "I" and "II" presents a timely
summary of organocatalysed reactions including: a) Enantioselective
C-C bond formation processes e.g. Michael-addition,
Mannich-reaction, Hydrocyanation (Strecker-reaction), aldol
reaction, allylation, cycloadditions, aza-Diels-Alder reactions,
benzoin condensation, Stetter reaction, conjugative Umpolung,
asymmetric Friedel-Crafts reactions; b) Asymmetric enantioselective
reduction processes e.g. Reductive amination of aldehydes or
ketones, asymmetric transfer hydrogenation; c) Asymmetric
enantioselective oxidation processes;
Brillouin-Wigner Methods for Many-Body Systems gives an introduction to many-body methods in electronic structure theory for the graduate student and post-doctoral researcher. It provides researchers in many-body physics and theoretical chemistry with an account of Brillouin-Wigner methodology as it has been developed in recent years to handle the multireference correlation problem. Moreover, the frontiers of this research field are defined. This volume is of interest to atomic and molecular physicists, physical chemists and chemical physicists, quantum chemists and condensed matter theorists, computational chemists and applied mathematicians.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This thesis explores the dispersion stability, microstructure and phase transitions involved in the nanoclay system. It describes the recently discovered formation of colloidal gels via two routes: the first is through phase separation and second is by equilibrium gelation and includes the first reported experimental observation of a system with high aspect ratio nanodiscs. The phase behavior of anisotropic nanodiscs of different aspect ratio in their individual and mixed states in aqueous and hydrophobic media is investigated. Distinct phase separation, equilibrium fluid and equilibrium gel phases are observed in nanoclay dispersions with extensive aging. The work then explores solution behavior, gelation kinetics, aging dynamics and temperature-induced ordering in the individual and mixed states of these discotic colloids. Anisotropic ordering dynamics induced by a water-air interface, waiting time and temperature in these dispersions were studied in great detail along with aggregation behavior of nanoplatelets in hydrophobic environment of alcohol solutions.
This book presents recent research on Advanced Computing in Industrial Mathematics, which is one of the most prominent interdisciplinary areas and combines mathematics, computer science, scientific computations, engineering, physics, chemistry, medicine, etc. Further, the book presents the tools of Industrial Mathematics, which are based on mathematical models, and the corresponding computer codes, which are used to perform virtual experiments to obtain new data or to better understand the existing experimental results. The book gathers the peer-reviewed papers presented during the 10th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM) from December 21 to 22, 2015 in Sofia, Bulgaria.
"Catalytic Microreactors for Portable Power Generation" addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors.
This work represents one of the first comprehensive attempts to seamlessly integrate two highly active interdisciplinary domains in soft matter science - microfluidics and liquid crystals (LCs). Motivated by the lack of fundamental experiments, Dr. Sengupta initiated systematic investigation of LC flows at micro scales, gaining new insights that are also suggestive of novel applications. By tailoring the surface anchoring of the LC molecules and the channel dimensions, different topological constraints were controllably introduced within the microfluidic devices. These topological constraints were further manipulated using a flow field, paving the way for Topological Microfluidics. Harnessing topology on a microfluidic platform, as described in this thesis, opens up capabilities beyond the conventional viscous-dominated microfluidics, promising potential applications in targeted delivery and sorting systems, self-assembled motifs, and novel metamaterial fabrications.
This volume records the proceedings of a Forum attended by many
leading researchers working in the field of Electron Density,
Density Matrix and Density Functional Theory held at the Coseners'
House, Abingdon-on-Thames, Oxfordshire, UK in early summer 2002.
The second edition of Gesser's classic Applied Chemistry includes updated versions of the original 16 chapters plus two new chapters on semiconductors and nanotechnology. This textbook introduces chemistry students to the applications of their field to engineering design and function across a wide range of subjects, from fuels and polymers to electrochemistry and water treatment. Each chapter concludes with a reading list of relevant books and articles as well as a set of exercises which include problems that extend the topics beyond the text. Other supplements to the text include a laboratory section with step-by-step experiments and a solutions manual for instructors.
Frustrated Lewis Pairs: From Dihydrogen Activation to Asymmetric Catalysis, by Dianjun Chen, Jurgen Klankermayer Coexistence of Lewis Acid and Base Functions: A Generalized View of the Frustrated Lewis Pair Concept with Novel Implications for Reactivity, by Heinz Berke, Yanfeng Jiang, Xianghua Yang, Chunfang Jiang, Subrata Chakraborty, Anne Landwehr New Organoboranes in "Frustrated Lewis Pair" Chemistry, by Zhenpin Lu, Hongyan Ye, Huadong Wang Paracyclophane Derivatives in Frustrated Lewis Pair Chemistry, by Lutz Greb, Jan Paradies Novel Al-Based FLP Systems, by Werner Uhl, Ernst-Ulrich Wurthwein N-Heterocyclic Carbenes in FLP Chemistry, by Eugene L. Kolychev, Eileen Theuergarten, Matthias Tamm Carbon-Based Frustrated Lewis Pairs, by Shabana Khan, Manuel Alcarazo Selective C-H Activations Using Frustrated Lewis Pairs. Applications in Organic Synthesis, by Paul Knochel, Konstantin Karaghiosoff, Sophia Manolikakes FLP-Mediated Activations and Reductions of CO2 and CO, by Andrew E. Ashley, Dermot O Hare Radical Frustrated Lewis Pairs, by Timothy H. Warren and Gerhard Erker Polymerization by Classical and Frustrated Lewis Pairs, by Eugene Y.-X. Chen Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems, by D. Wass Reactions of Phosphine-Boranes and Related Frustrated Lewis Pairs with Transition Metal Complexes, by Abderrahmane Amgoune, Ghenwa Bouhadir, Didier Bourissou"
New Antisense Strategies: Chemical Synthesis of RNA Oligomers, by Junichi Yano und Gerald E. Smyth Development and Modification of Decoy Oligodeoxynucleotides for Clinical Application, by Mariana Kiomy Osako, Hironori Nakagami und Ryuichi Morishita Modulation of Endosomal Toll-Like Receptor-Mediated Immune Responses by Synthetic Oligonucleotides, by Ekambar R. Kandimalla und Sudhir Agrawal Delivery of Nucleic Acid Drugs, by Yan Lee und Kazunori Kataoka Aptamer: Biology to Applications, by Yoshikazu Nakamura Development and Clinical Applications of Nucleic Acid Therapeutics, by Veenu Aishwarya, Anna Kalota und Alan M. Gewirtz
This lab manual guides chemists through demonstrations of synergistic effects between polyelectrolytes and nanoparticles. After a short introduction into the field of polyelectrolytes and polyelectrolyte characterization, the book discusses the role of polyelectrolytes in the process of nanoparticle formation. The book also explains methods for characterization of the polyelectrolyte-modified nanoparticles.
This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This thesis focuses on the controlled synthesis of Pt-Ni bimetallic nanoparticles and the study of their catalytic properties. It discusses in detail the nucleation mechanism and the growth process of bimetallic systems, which is vital for a deeper understanding of the design of bimetallic catalysts. The author presents four pioneering studies: (1) syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and the study of their structure-activity relationship in model hydrogenation reactions; (2) a strategy for designing a concave Pt-Ni alloy using controllable chemical etching; (3) defect-dominated shape recovery of nanocrystals, which is a new synthesis strategy for trimetallic catalysts; (4) a sophisticated construction of Au islands on Pt Ni, which is an ideal trimetallic nanoframe catalyst. This thesis inspires researchers working in materials, catalysis as well as other interdisciplinary areas.
Polymer electrolyte fuel cells (PEFCs) or proton exchange m- brane fuel cells (PEMFCs) have been suggested as alternatives to replace many existing energy conversion technologies, incl- inginternalcombustionenginesandbatteries.Themostsigni?cant advances in PEFC technology achieved in the last decade have occurredinareasrelatedtoautomotiveapplications,namelyco- start capabilities, enhanced durability and better understanding of watermanagementandmasstransportlosses. This volume of Modern Aspects of Electrochemistry is intendedtoprovideanoverviewofadvancementsinexperimental diagnosticsandmodelingofpolymerelectrolytefuelcells.Chapters byHuangandReifsniderandGuetal.provideanin-depthreview of the durability issues in PEFCs as well as recent developments in understanding and mitigation of degradation in the polymer membraneandelectrocatalyst. Enabling cold start, the startup of PEFC stacks from subzero temperatures, is a very important capability achieved only within thelastfewyears.TajiriandWangprovideatutorialoverviewofthe requirementsforcoldstart,andprovideasummaryofexperimental diagnosticsandcold-startmodelingstudies. Chapters 4-6 address speci?c diagnostic methods in PEFCs. Martin et al. provide a detailed review of methods for distributed diagnostics of species, temperature, and current in PEFCs in Chapter 4.In Chapter 5, Hussey and Jacobson describe the op- ationalprinciplesofneutronradiographyforin-situvisualizationof liquidwaterdistribution,andalsooutlineissuesrelatedtotemporal andspatialresolution.TsushimaandHiraidescribebothmagnetic resonance imaging (MRI) technique for visualization of water in PEFCsandtunablediodelaserabsorptionspectroscopy (TDLAS) formeasurementofwatervaporconcentrationinChapter6. Diffusionmedia(DM)areproneto?oodingwithliquidwater. AlthoughtheDMisanessentialcomponentofPEFCsthatenable distributionofspeciesandcollectionofcurrentandheat,littlewas knownaboutcapillarytransportinDMsuntilrecently.InChapters7 Gostick et al. provide a description of liquid water transport in porousDMduetocapillarityanddescribeexperimentaltechniques usedtocharacterizeDMproperties. v vi Preface The?naltwochaptersdiscussmodelingofPEFCs.Mukherjee and Wang provide an in-depth review of meso-scale modeling of two-phase transport, while Zhou et al. summarize both the s- ulation of electrochemical reactions on electrocatalysts and the transport of protons through the polymer electrolyte using at- isticsimulationtoolssuchasmoleculardynamicsandMonteCarlo techniques. Eachchapterinthevolumeisself-contained;thereforetheydo notneedtobereadinacertainorder. Special thanks are due to 23 authors who contributed to this volume.
In this book, the problem of electron and hole transport is approached from the point of view that a coherent and consistent physical theory can be constructed for transport phenomena. Along the road readers will visit some exciting citadels in theoretical physics as the authors guide them through the strong and weak aspects of the various theoretical constructions. Our goal is to make clear the mutual coherence and to put each theoretical model in an appropriate perspective. The mere fact that so many partial solutions have been proposed to describe transport, be it in condensed matter, fluids, or gases, illustrates that we are entering a world of physics with a rich variety of phenomena. Theoretical physics always seeks to provide a unifying picture. By presenting this tour of many very inventive attempts to build such a picture, it is hoped that the reader will be inspired and encouraged to help find the unifying principle behind the many faces of transport.
The need for properties is ever increasing to make processes more economical. A good survey of the viscosity data, its critical evaluation and correlation would help design engineers, scientists and technologists in their areas of interest. This type of work assumes more importance as the amount of experimental work in collection and correlation of properties such as viscosity, thermal conductivity, heat capacities, etc has reduced drastically both at the industry, universities, and national laboratories. One of the c o-authors, Professor Viswanath, co-authored a book jointly with Dr. Natarajan Data Book on the Viscosity of Liquids in 1989 which mainly presented collected and evaluated liquid viscosity data from the literature. Although it is one of its kinds in the field, Prof. Viswanath recognized that the design engineers, scientists and technologists should have a better understanding of theories, experimental procedures, and operational aspects of viscometers. Also, rarely the data are readily available at the conditions that are necessary for design of the equipment or for other calculations. Therefore, the data must be interpolated or extrapolated using the existing literature data and using appropriate correlations or models. We have tried to address these issues in this book."
I ?rst heard of k.p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k.p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k.p technique to predict and 't non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter's recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks's talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k.p method for interpreting my data in a simple way."
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Hydrogen bonds represent type of molecular interaction that
determines the structure and function of a large variety of
molecular systems. The elementary dynamics of hydrogen bonds and
related proton transfer reactions, both occurring in the ultra fast
time domain between 10-14 and 10-11s, form a research topic of high
current interest.
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
Multiphase catalysis is a key technology for the competitive and sustainable production of fine chemicals in coming decades. A joint academic and industry consortium has developed tools for considering complex chemical and process-based requirements when setting up a catalytic system. This book shows how the resulting competence covers such supercritical fluid (SCF) technology in catalysis, ionic liquids (Il), ligand design for SFCs and Ils, thermomorphic solvent systems, reactor design and more.
A thermodynamically consistent description of the transport across interfaces in mixtures has for a long time been an open issue. This research clarifies that the interface between a liquid and a vapor in a mixture is in local equilibrium during evaporation and condensation. It implies that the thermodynamics developed for interfaces by Gibbs can be applied also away from equilibrium, which is typically the case in reality. A description of phase transitions is of great importance for the understanding of both natural and industrial processes. For example, it is relevant for the understanding of the increase of CO2 concentration in the atmosphere, or improvements of efficiency in distillation columns. This excellent work of luminescent scientific novelty has brought this area a significant step forward. The systematic documentation of the approach will facilitate further applications of the theoretical framework to important problems.
In 2001 Wyn Roberts celebrated both his 70th birthday and 50 years of working in surface science, to use the term "surface science" in its broadest meaning. This book aims to mark the anniversary with a contribution of lasting value, something more than the usual festschrift issue of a relevant journal. The book is divided into three sections: Surface Science, Model Catalysts and Catalysis, topics in which Wyn has always had interests. The authors for each chapter were chosen from some of the many eminent scientists who have worked with Wyn in various ways and are all internationally acknowledged as leaders in their field. The authors have produced authoritative reviews of their own specialties which together result in a book with an unrivalled combination of breadth and depth exploring the most recent developments in surface chemistry and catalysis. |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Clinical Obstetrics - A South African…
H.S. Cronje, J.B.F. Cilliers, …
Paperback
Conversations With A Gentle Soul
Ahmed Kathrada, Sahm Venter
Paperback
![]()
|