![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
'A comprehensive review of the current state of the theoretical development in this important area of potential application of conducting polymers, and is very timely...The editor-author is to be congratulated for his marathon efforts and the production of a significant contribution to the literature.' -TRIP This three-part series provides undergraduate and graduate students in electrochemistry and materials science with a broad understanding of electroactive polymers. In Part I, renowned scientists examine the fundamental principles underlying electrochemical behavior of electroactive polymer materials. Contributors focus on the fundamentals of charge percolation and conductivity behavior associated with the membrane properties of electroactive polymer films. Part I also includes coverage of the phenomenon of heterogeneous redox catalysis at electroactive polymer modified electrodes.
This and its companion Volumes 2 and 3 document the proceed- ings of the 4th International Symposium on Surfactants in Solution held in Lund, Sweden, June 27-July 2, 1982. This biennial event was christened as the 4th Symposium as this was a continuation of ear- li er conferences dealing with surfactants held in 1976 (Albany) under the title "Micellization, Solubilization, and Microemulsions"; in 1978 (Knoxville) under the title "Solution Chemistry of Surfac- tants"; and in 1980 (Potsdam) where it was dubbed as "Solution Be- bavior of Surfactants: Theoretical and Applied Aspects:' The Pl02 3 ceedings of all these symposia have been properly chronicled. ' , The Lund Symposium was bi lIed as "Surfactants in Solution" as both the aggregation and adsorption aspects of surfactants were covered, and furthermore we were interested in a general title which could be used for future conferences in this series. As these biennial events bave become a weIl recognized forum for bringing together researchers with varied interests in the arena of surfactants, so it is amply vindicated to continue these, and the next meeting is planned for July 9-13, 1984 in Bordeaux, France under the cochair- manship of K. L. Mittal and P. Bothorel. The venue for 1986 is still open, although India, inter alia, is a good possibility. Apropos, we would be delighted to entertain suggestions regarding where and when these biennial symposia should be held in the future and you may direct your response to Kk~.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
The theoretical basis of this book is developed ab ovo. This requires dealing with several problems arising in physical chemistry including the concept of entropy as a thermodynamic coordinate and its relation to probability. Thus Maxwell Boltzmann and Gibbs statistical thermodynamics, and quantum statistics are made considerable use of. A statistical mechanical derivation of the law of mass action for gases and solids is presented, and the problems arising in the application of the law of mass action to the liquid state are addressed. Molecular interactions and how to take them into account when deriving the law of mass action is discussed in some detail sketching a way alternativ to the use of activities. Finally, attention is drawn to the statistical mechanical background to Linear Free Energy Relationships (LFER's) and of Isokinetic Relationships (IKR's) and their connections with molecular interactions.
The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on isobaric binary systems. The fourth section gives an account of the thermodynamic analyses of four isobaric binary key systems, highlighting the power of empirical, (exo)thermodynamic correlations. The fifth section is devoted to the thermodynamic description of ternary systems. The last three sections concentrate on the properties of materials, and the phase behaviour of systems under the conditions of high temperature and high pressure conditions that prevail in the interior of the Earth. A new equation of state is the subject of the sixth section. In the seventh section a move is made to statistical thermodynamics and vibrational models; the description of the systems has changed from mathematical to physical. The last section is on the system MgO SiO2, looked upon from a geophysical point of view. Throughout the work high priority is given to the thermodynamic assessment of experimental data; numerous end-of-section exercises and their solutions are included. Along with the First Volume, the work is useful for materials scientists and geophysicists as a reference text. Audience Volume II is a lecture book for postgraduate students in chemistry, chemical engineering, geology and metallurgy. It is highly useful as a recommended text for teachers and researchers in all fields of materials science. "
The periodic table is one of the most potent icons in science. It
lies at the core of chemistry and embodies the most fundamental
principles of the field. The one definitive text on the development
of the periodic table by van Spronsen (1969), has been out of print
for a considerable time. The present book provides a successor to
van Spronsen, but goes further in giving an evaluation of the
extent to which modern physics has, or has not, explained the
periodic system. The book is written in a lively style to appeal to
experts and interested lay-persons alike.
Through this monograph, the pharmaceutical chemist gets familiar with the possibilities electroanalytical methods offer for validated analyses of drug compounds and pharmaceuticals. The presentation focuses on the techniques most frequently used in practical applications, particularly voltammetry and polarography. The authors present the information in such a way that the reader can judge whether the application of such techniques offers advantages for solving a particular analytical problem. Basics of individual electroanalytical techniques are outlined using as simple language as possible, with a minimum of mathematical apparatus. For each electroanalytical technique, the physical and chemical processes as well as the instrumentation are described. The authors also cover procedures for the identification of electroactive groups and the chemical and electrochemical processes involved. Understanding the principles of such processes is essential for finding optimum analytical conditions in the most reliable way. Added to this is the validation of such analytical procedures. A particularly valuable feature of this book are extensive tables listing numerous validated examples of practical applications. Various Indices according to the drug type, the electroactive group and the type of method as well as a subject and author index are also provided for easy reference.
"Blurb & Contents" This collection of articles covers the "quiet revolution" that took place in quantum optics in the 1980s. Explores far-reaching repercussions in methods of light field generation, propagation, and detection in the quantum rather than in the classical regime. Throughout, theory is discussed with supporting experimental data. Newcomers and experienced researchers will find this a useful introduction and an excellent reference. Contents: Introduction. The early years. Photon antibunching and sub- Poissonian photon statistics. Squeezed states of light. Quantum non- demolition. Quantum effects in photon interference. Cavity quantum electrodynamics. Quantum noise reduction in lasers.
This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.
Quantum Simulations of Materials and Biological Systems features contributions from leading world experts in the fields of density functional theory (DFT) and its applications to material and biological systems. The recent developments of correlation functionals, implementations of Time-dependent algorithm into DFTB+ method are presented. The applications of DFT method to large materials and biological systems such as understanding of optical and electronic properties of nanoparticles, X-ray structure refinement of proteins, the catalytic process of enzymes and photochemistry of phytochromes are detailed. In addition, the book reviews the recent developments of methods for protein design and engineering, as well as ligand-based drug design. Some insightful information about the 2011 International Symposium on Computational Sciences is also provided. Quantum Simulations of Materials and Biological Systems is aimed at faculties and researchers in the fields of computational physics, chemistry and biology, as well as at the biotech and pharmaceutical industries.
The activation of dioxygen by metal ions has both synthetic potential and biological relevance. Dioxygen is the cleanest oxidant for use in emission-free technologies to minimize pollution of the environment. The book gives a survey of those catalyst systems based on metal complexes which have been discovered and studied in the last decade. They activate molecular oxygen and effect the oxidation of various organic compounds under mild conditions. Much of the recent progress is due to a search for biomimetic catalysts that would duplicate the action of metalloenzymes. Mechanistic aspects are emphasized throughout the book. An introductonary chapter reviews the chemistry of transition metal dioxygen complexes, which are usually the active intermediates in the catalytic reactions discussed. Separate chapters are devoted to oxidation of saturated, unsaturated and aromatic hydrocarbons, phenols, catechols, oxo-compounds, phosphorus, sulfur and nitrogen compounds.
The 2003 International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials" was held in September 2003. In the tradition of the earlier ICHMS conferences, this meeting served as an interdisciplinary forum for the presentation and discussion of the most recent research on transition to hydrogen-based energy systems, technologies for hydrogen production, storage, utilization, materials, energy and environmental problems. The aim of the volume is to provide an overview of the latest scientific results on research and development in the different topics cited above. The representatives from industry, public laboratories, universities and governmental agencies have presented the most recent advances in hydrogen concepts, processes and systems, to evaluate current progress in these areas of investigations and to identify promising research directions for the future.
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
The so-called reaction path (RP) with respect to the potential energy or the Gibbs energy ("free enthalpy") is one of the most fundamental concepts in chemistry. It significantly helps to display and visualize the results of the complex microscopic processes forming a chemical reaction. This concept is an implicit component of conventional transition state theory (TST). The model of the reaction path and the TST form a qualitative framework which provides chemists with a better understanding of chemical reactions and stirs their imagination. However, an exact calculation of the RP and its neighbourhood becomes important when the RP is used as a tool for a detailed exploring of reaction mechanisms and particularly when it is used as a basis for reaction rate theories above and beyond TST. The RP is a theoretical instrument that now forms the "theoretical heart" of "direct dynamics." It is particularly useful for the interpretation of reactions in common chemical systems. A suitable definition of the RP of potential energy surfaces is necessary to ensure that the reaction theories based on it will possess sufficiently high quality. Thus, we have to consider three important fields of research: - Analysis of potential energy surfaces and the definition and best calculation of the RPs or - at least - of a number of selected and chemically interesting points on it. - The further development of concrete vers ions of reaction theory beyond TST which are applicable for common chemical systems using the RP concept.
There exists a large literature on the spectroscopic properties of copper(II) com- 9 pounds. This is due to the simplicity of the d electron configuration, the wide variety of stereochemistries that copper(II) compounds can adopt, and the f- xional geometric behavior that they sometimes exhibit [1]. The electronic and geometric properties of a molecule are inexorably linked and this is especially true with six-coordinate copper(II) compounds which are subject to a Jahn-T- ler effect.However,the spectral-structural correlations that are sometimes d- wn must often be viewed with caution as the information contained in a typical solution UV-Vis absorption spectrum of a copper(II) compound is limited. Meaningful spectral-structural correlations can be obtained in a related series of compounds where detailed spectroscopic data is available. In the fol- 4- lowing sections two such series are examined; the six-coordinate CuF and 6 2+ Cu(H O) ions doped as impurities in single crystal hosts.Using low tempera- 2 6 ture polarized optical spectroscopy and electron paramagnetic resonance, a very detailed picture can be drawn about the geometry of these ions in both their ground and excited electronic states. We then compare the spectrosco- cally determined structural data with that obtained from X-ray diffraction or EXAFS measurements.
In order to meet the ever-increasing demands for enantiopure compounds, heteroge- ous, homogeneous and enzymatic catalysis evolved independently in the past. Although all three approaches have yielded industrially viable processes, the latter two are the most widely used and can be regarded as complementary in many respects. Despite the progress in structural, computational and mechanistic studies, however, to date there is no universal recipe for the optimization of catalytic processes. Thus, a trial-and-error approach remains predominant in catalyst discovery and optimization. With the aim of complementing the well-established fields of homogeneous and enzymatic catalysis, organocatalysis and artificial metalloenzymes have enjoyed a recent revival. Artificial metalloenzymes, which are the focus of this book, result from comb- ing an active but unselective organometallic moiety with a macromolecular host. Kaiser and Whitesides suggested the possibility of creating artificial metallo- zymes as long ago as the late 1970s. However, there was a widespread belief that proteins and organometallic catalysts were incompatible with each other. This severely hampered research in this area at the interface between homogeneous and enzymatic catalysis. Since 2000, however, there has been a growing interest in the field of artificial metalloenzymes for enantioselective catalysis. The current state of the art and the potential for future development are p- sented in five well-balanced chapters. G. Roelfes, B. Feringa et al. summarize research relying on DNA as a macromolecular host for enantioselective catalysis.
From materials science to integrated circuit development, much of modern technology is moving from the microscale toward the nanoscale. This book focuses on the fundamental physics underlying innovative techniques for analyzing surfaces and near-surfaces. New analytical techniques have emerged to meet these technological requirements, all based on a few processes that govern the interactions of particles and radiation with matter. This book addresses the fundamentals and application of these processes, from thin films to field effect transistors.
Almost thirty years ago the author began his studies in colloid chemistry at the laboratory of Professor Ryohei Matuura of Kyushu University. His graduate thesis was on the elimination of radioactive species from aqueous solution by foam fractionation. He has, except for a few years of absence, been at the university ever since, and many students have contributed to his subsequent work on micelle formation and related phenomena. Nearly sixty papers have been published thus far. Recently, in search of a new orientation, he decided to assemble his findings and publish them in book form for review and critique. In addition, his use of the mass action model of micelle has received much criticism, especially since the introduction of the phase separation model. Many recent reports have postulated a role for Laplace pressure in micellization. Although such a hypothesis would provide an easy explanation for micelle formation, it neglects the fact that an interfacial tension exists between two macroscopic phases. The present book cautions against too ready an acceptance of the phase separation model of micelle formation. Most references cited in this book are studies introduced in small group meetings of colloid chemists, the participants at which included Professors M. Saito, M. Manabe, S. Kaneshina, S. Miyagishi, A. Yamauchi, H. Akisada, H. Matuo, M. Sakai, and Drs. O. Shibata, N. Nishikido, and Y. Murata, to whom the author wishes to express his gratitude for useful discussions.
Solid State Chemistry is a general textbook, composed for those
with little background knowledge of the subject, but who wish to
learn more about the various segments of solid state theory and
technology.
Multi-scale Quantum Models for Biocatalysis explores various molecular modelling techniques and their applications in providing an understanding of the detailed mechanisms at play during biocatalysis in enzyme and ribozyme systems. These areas are reviewed by an international team of experts in theoretical, computational chemistry, and biophysics. This book presents detailed reviews concerning the development of various techniques, including ab initio molecular dynamics, density functional theory, combined QM/MM methods, solvation models, force field methods, and free-energy estimation techniques, as well as successful applications of multi-scale methods in the biocatalysis systems including several protein enzymes and ribozymes. This book is an excellent source of information for research professionals involved in computational chemistry and physics, material science, nanotechnology, rational drug design and molecular biology and for students exposed to these research areas."
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments. |
You may like...
|