![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This volume provides an overview of the applications of modern solid-state nuclear magnetic resonance (NMR) techniques to the study of catalysts, catalytic processes, species adsorbed on catalysts and systems relevant to heterogeneous catalysis. It characterizes the structure of catalytic materials and surfaces.
This work presents a compilation of technical papers and poster synopses delivered at the 14th Conference on Catalysis of Organic Reactions. The book investigates current developments in the study of catalysis as it relates to organic synthesis, detailing industrial applications. It suggests cost-effective routes for the synthesis of valuable industrial and pharmaceutical chemicals.
This book introduces combustion related topics, including chemical thermodynamics, chemical kinetics, deflagrations, detonations in premixed media, diffusion flames, ignition, and flame stabilization, to undergraduate students in mechanical, aerospace, chemical, and civil engineering.
Uses Computational Tools to Simulate Endocrine Disruption Phenomena Endocrine Disruption Modeling provides a practical overview of the current approaches for modeling endocrine activity and the related potential adverse effects they may induce on environmental and human health. Based on the extensive research of an international panel of contributors from industry, academia, and regulatory agencies, this is the first book devoted to using computer tools to better understand and simulate the multifaceted aspects of endocrine disruption in humans and wildlife. Explores Diverse Modeling Techniques and Applications This up-to-date resource focuses on xenobiotics that are accidentally released into the environment with the potential to disturb the normal functioning of the endocrine system of invertebrates and vertebrates but also on the specific agro-chemistry design of chemicals that take control of insect endocrine systems. A comprehensive research reference, Endocrine Disruption Modeling provides a collection of computational strategies to model these structurally diverse chemicals. It concludes with a review of the available e-resources in the field, rounding out the book's task-oriented approach to future EDC discovery. Endocrine Disruption Modeling is the first book in the QSAR in Environmental and Health Sciences series (James Devillers, [email protected]).
While the relevant features and properties of nanosystems necessarily depend on nanoscopic details, their performance resides in the macroscopic world. To rationally develop and accurately predict performance of these systems we must tackle problems where multiple length and time scales are coupled. Rather than forcing a single modeling approach to predict an event it was not designed for, a new paradigm must be employed: multiscale modeling. A brilliant solution to a pervasive problem, Multiscale Modeling: From Atoms to Devices offers a number of approaches for which more than one scale is explicitly considered. It provides several alternatives, from coarse-graining sampling of the atomic and mesoscale to Monte Carlo- and thermodynamic-based models that allow sampling of increasingly large scales up to multiscale models able to describe entire devices. Beginning with common techniques for coarse-graining, the book discusses their theoretical background, advantages, and limitations. It examines the application-dependent parameterization characteristics of coarse-graining along with the "finer-trains-coarser" multiscale approach and describes three carefully selected examples in which the parameterization, although based on the same principles, depends on the actual application. The book considers the use of ab initio and density functional theory to obtain parameters needed for larger scale models, the alternative use of density functional theory parameters in a Monte Carlo method, and the use of ab initio and density functional theory as the atomistic technique underlying the calculation of thermodynamics properties of alloy phase stability. Highlighting one of the most challenging tasks for multiscale modelers, Multiscale Modeling: From Atoms to Devices also presents modeling for nanocomposite materials using the embedded fiber finite element method (EFFEM). It emphasizes an ensemble Monte Carlo method to high field-charge transport problems and demonstrates the practical application of modern many-body quantum theories. The author maintains a website with additional information.
Handbook of Thermal Conductivity of Liquids and Gases covers practically all of the data available on the thermalconductivity of pure liquids and gases. Thermal conductivity data included in the book is based on original experimental measurements and correlations recommended or adopted as a standard by the National Standard Reference Data Service of the Russian Federation. New tabulations of thermal conductivity data on high-molecular organic fluids and the alkali metals in both liquid and gaseous states are featured as well. This book will be an important reference for all researchers working in thermodynamics.
Heterogeneous catalysis has developed over the past two centuries as a technology driven by the needs of society, and is part of Nobel Prize-winning science. This book describes the spectacular increase in molecular understanding of heterogenous catalytic reactions in important industrial processes. Reaction mechanism and kinetics are discussed with a unique focus on their relation with the inorganic chemistry of the catalyst material. An introductory chapter presents the development of catalysis science and catalyst discovery from a historical perspective. Five chapters that form the thrust of the book are organized by type of reaction, reactivity principles, and mechanistic theories, which provide the scientific basis to structure-function relationships of catalyst performance. Present-day challenges to catalysis are sketched in a final chapter. Written by one of the world's leading experts on the topic, this definitive text is an essential reference for students, researchers and engineers working in this multibillion-dollar field.
This introduction to the principles and application of electrochemistry is presented in a manner designed for undergraduates in chemistry and related fields. The author covers the essential aspects of the subject and points the way to further study, his concern being with the overall shape of electrochemistry, its coherence and its wider application. This edition differs from its predecessors in having principles and applications separated, and greater prominence is given to areas such as electrochemical sensors and electroanalytical techniques, of which a number of modern methods were not included in previous editions. A range of numerical problems and outline solutions is provided for each chapter to cover most situations that a student might encounter.
From forensics and security to pharmaceuticals and environmental applications, spectroscopic detection is one of the most cost-effective methods for identifying chemical compounds in a wide range of disciplines. For spectroscopic information, correlation charts are far more easily used than tables, especially for scientists and students whose own areas of specialization may lie elsewhere. The CRC Handbook of Fundamental Spectroscopic Correlation Charts provides a collection of spectroscopic information and unique correlation charts for use in the interpretation of spectroscopic measurements. The handbook presents useful analysis and assignment of spectra and structural elucidation of organic and organometallic molecules. The correlation charts are compiled from an extensive search of spectroscopic literature and contain current, detailed information that includes new results for many compounds. The handbook includes graphical data charts for nuclear magnetic resonance spectroscopy of the most useful nuclei, as well as infrared and ultraviolet spectrophotometry. Because mass spectrometry data is not best represented graphically, the data are presented in tabular form, where mass spectrometry can be used for analyses and structural determinations in tandem with other techniques. In addition to presenting absorption bands and intensities for a variety of important functional groups and chemical families, the book also discusses instrument calibration, diagnostics, common solvents, fragmentation patterns, several practical conversion tables, and laboratory safety. Not intended to replace reference works that provide exhaustive spectral charts on specific compound classes, this book fills the need for fundamental charts that are needed on a general, day-to-day basis. The CRC Handbook of Fundamental Spectroscopic Correlation Charts is an ideal laboratory companion for students and professionals in academic, industrial, and government labs.
This book offers unique coverage of the mechanical properties of nano- and micro-dispersed magnetic fluids. Magnetic fluids are artificially created materials that do not exist in the nature. Researchers developing materials and devices are keenly interested in their "mutually exclusive" properties including fluidity, compressibility, and the ability to magnetize up to saturation in relatively small magnetic fields. Applications of micro- and nanodispersed magnetic fluids include magnetic-seals, magnetically operated grease in friction units and supports, separators of non-magnetic materials, oil skimmers and separators, sensors of acceleration and angle, and gap fillers in loudspeakers.
This book features information regarding the Chernobyl nuclear accident, the production of elementary particles, radiation exposure, the geopolitical effects of the end of the nuclear arms race between the U.S. and the former Soviet Union, and the future of nuclear power.
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevance to renewable energy sources. PEM Electrolysis for Hydrogen Production: Principles and Applications discusses the advantages of PEM electrolyzers over alkaline electrolyzers, presents the recent advances of hydrogen PEM fuel cells accelerating the large-scale commercialization of PEM electrolysis, and considers the challenges that must be addressed before PEM electrolysis can become a commercially feasible option. Written by international scientists in PEM electrolysis and fuel cell research areas, this book addresses the demand for energy storage technologies that store intermittent renewable energy and offers the most complete and up-to-date information on PEM electrolysis technology and research. The authors: Cover the fundamental applications of PEM electrolysis Review the state-of-the-art technologies and challenges related to each of the components of the PEM electrolysis Address failure analysis and review available failure diagnostic tools Provide future direction for researchers and technology developers PEM Electrolysis for Hydrogen Production: Principles and Applications provides a fundamental understanding of the requirements and functionalities of certain components and attributes of the PEM electrolysis technology that are common for both PEM fuel cells' and electrolyzers' hydrogen applications for energy storage. Beneficial to students and professionals, the text serves as a handbook for identifying PEM electrolysis failure modes and diagnosing electrolyzer performance to improve efficiency and durability.
Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry with up-to-date references and data from real-world examples.This book enables readers to better understand many natural phenomena and industrial processes. Mathematical treatment is mainly given as references to make the material accessible to individuals with a broader range of scientific backgrounds. The book begins by introducing basic considerations with respect to liquid and solid surfaces and describes forces in curved versus flat liquid surfaces. Chapters cover properties of surface active substances, such as surfactants and soaps; lipid films and Langmuir-Blodgett films; and adsorption and desorption on solid surfaces. The author discusses processes involved in liquidsolid interface phenomena, which are utilized in washing, coatings, lubrication, and more, and colloid chemistry systems and related industrial applications such as wastewater treatment. The author also addresses bubbles, films, and foams and the principles of oil water emulsion science, used in detergents, paints, and skin creams. The final chapter considers more complex applications, for example, food emulsions, scanning probe miscroscopy, the cement industry, and gas and oil recovery.
Molecular modeling is becoming an increasingly important part of chemical research and education as computers become faster and programs become easier to use. The results, however, have not become easier to understand. Addressing the need for a "workshop-oriented" book, Molecular Modeling Basics provides the fundamental theory needed to understand not only what molecular modeling programs do, but also the gist of research papers that describe molecular modeling results. Written in a succinct manner using informal language, the book presents concise coverage of key concepts suitable for novices to the field. It begins by examining the potential energy surface (PES), which provides the connection between experimental data and molecular modeling. It explores ways to calculate energy by molecular and quantum mechanics. It describes molecular properties and the condensed phase, and shows how to extract and interpret information from a program output. The author uses hands-on exercises to illustrate concepts and he supplements the text with a blog containing animated tutorials and interactive figures. Drawn from the author's own lecture notes from a class he taught for many years at the University of Iowa, this volume introduces topics in such a way that beginners can clearly comprehend molecular modeling results. A perfect supplement to a molecular modeling textbook, the book offers students the "hands-on" practice they need to grasp sophisticated concepts. In addition to his blog, the author maintains a website describing his research and one detailing his seminars.
Polyamic Acids and Polyimides surveys significant developments in basic research in the chemistry and physics of polyamic acids and polyimides over the last several years. Traditional and new topics are discussed, including catalytical imidization, chemical reactions at thermal treatment, quantum-chemical study of synthesis and structure, properties of isolated molecules, and supermolecular and crystalline structures. The book will be an excellent reference for researchers, practitioners, and graduate students working with polyimides and related heat-resistant polymers and materials.
Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabrication Points out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performance Analyzes the current integration of PEMs with primary power devices and explores research trends for the next generation of PEMs Electrochemical Polymer Electrolyte Membranes provides a systematic overview of the state of the art of PEM development, making the book a beneficial resource for researchers, students, industrial professionals, and manufacturers.
The Ion Exchange and Solvent Extraction series treats ion exchange and solvent extraction both as discrete topics and as a unified, multidisciplinary study - presenting new insights for researchers in many chemical and related field. Containing current knowledge and results in ion exchange, this text: presents an overview of the chemical thermodynamics of cation-exchange reactions, with particular emphasis placed on liquid-phase- and solid-phase-activity coefficient models; describes the development of surface complexation theory and its application to the ion exchange phenomenon; discusses metal-natural colloid surface reactions and their consideration by surface complexation modelling complements; and covers the influence of humic substances on the uptake of metal ions by naturally occurring materials.
Striking a balance between basic chemistry and chemical engineering, this up-to-date reference discusses important aspects of acetic acid and its major derivatives, including chemistry, methods of preparation and manufacture, and synthesis, as well as current and emerging downstream technologies.;The book provides comprehensive physical property data for compounds and their separation, including acetic acid-water separation. Describing five categories of techniques for the manufacture of acetic acid, it: examines thermophysical properties and aqueous solutions, with detailed explanations of mathematical models and correlations; supplies a critical analysis of property; outlines manufacturing costs and related economic factors; reviews the applications of acetic acid and derivatives; covers the chemistry and preparation of the derivatives; elucidates recent topics such as deicers, esters and new esterification technologies.
A monograph examining recent progress in the field of inhomogeneous fluids, focusing on the theoretical - as well as experimental - techniques used. It presents the comprehensive theory of first-order phase transitions, including melting, and contains numerous figures, tables and display equations.;The contributors treat such subjects as: exact sum rules for inhomogenous fluids, explaining density functional and integral equation methods; exact solutions for two-dimensional homogeneous and inhomogeneous plasmas; current advances in the theory of interfacial electrochemistry; wetting experiments and the theory of wetting; freezing, with an emphasis on quantum systems and homogeneous nucleation in liquid-vapour and solid-liquid transitions; self-organizing liquids as well as kinetic phenomena in inhomogeneous fluids, using a modified Enskog theory.;Featuring over 1000 bibliographic citations, this volume is aimed at physical, surface, colloid and surfactant chemists; also physicists, electrochemists and graduate-level students in these disciplines.
The growth in the world's nuclear industry, motivated by peaking world oil supplies, concerns about the greenhouse effect, and domestic needs for energy independence, has resulted in a heightened focus on the need for next-generation nuclear fuel-cycle technologies. Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19 provides a comprehensive look at the state of the science underlying solvent extraction in its role as the most powerful separation technique for the reprocessing of commercial spent nuclear fuel. Capturing the current technology and scientific progress as it exists today and looking ahead to potential developments, the book examines the overall state of solvent extraction in reprocessing, new molecules for increased selectivity and performance, methods for predicting extractant properties, and actinide-lanthanide group separation. The contributors also explore the simultaneous extraction of radionuclides by mixing extractants, the cause and nature of third-phase formation, the effects of radiation on the solvent and its performance, analytical techniques for measuring process concentrations, new centrifugal contactors for more efficient processing, and new chemistry using novel media. The long-term vision of many professionals in the field entails a proliferation-free nuclear energy economy in which little or no waste is stored or released into the environment and all potential energy values in spent nuclear fuel are recycled. This text opens a window on that possibility, offering insight from world leaders on the cutting edge of nuclear research.
Powder diffraction is a widely used scientific technique in the characterization of materials with broad application in materials science, chemistry, physics, geology, pharmacology and archaeology. Powder Diffraction: Theory and Practice provides an advanced introductory text about modern methods and applications of powder diffraction in research and industry. The authors begin with a brief overview of the basic theory of diffraction from crystals and powders. Data collection strategies are described including x-ray, neutron and electron diffraction setups using modern day apparatus including synchrotron sources. Data corrections, essential for quantitative analysis are covered before the authors conclude with a discussion of the analysis methods themselves. The information is presented in a way that facilitates understanding the information content of the data, as well as best practices for collecting and analyzing data for quantitative analysis. This long awaited book condenses the knowledge of renowned experts in the field into a single, authoritative, overview of the application of powder diffraction in modern materials research. The book contains essential theory and introductory material for students and researchers wishing to learn how to apply the frontier methods of powder diffraction
Unravels Complex Problems through Quantum Monte Carlo Methods Clusters hold the key to our understanding of intermolecular forces and how these affect the physical properties of bulk condensed matter. They can be found in a multitude of important applications, including novel fuel materials, atmospheric chemistry, semiconductors, nanotechnology, and computational biology. Focusing on the class of weakly bound substances known as van derWaals clusters or complexes, Stochastic Simulations of Clusters: Quantum Methods in Flat and Curved Spaces presents advanced quantum simulation techniques for condensed matter. The book develops finite temperature statistical simulation tools and real-time algorithms for the exact solution of the Schroedinger equation. It draws on potential energy models to gain insight into the behavior of minima and transition states. Using Monte Carlo methods as well as ground state variational and diffusion Monte Carlo (DMC) simulations, the author explains how to obtain temperature and quantum effects. He also shows how the path integral approach enables the study of quantum effects at finite temperatures. To overcome timescale problems, this book supplies efficient and accurate methods, such as diagonalization techniques, differential geometry, the path integral method in statistical mechanics, and the DMC approach. Gleaning valuable information from recent research in this area, it presents special techniques for accelerating the convergence of quantum Monte Carlo methods.
Modern adhesive dentistry has numerous applications in cariology, as well as in aesthetic and pediatric dentistry, prosthodontics, implantology, and orthodontics-in essence, in comprehensive dental care. This unique book addresses various ramifications of adhesion and adhesives in the broad domain of dentistry. The topics covered include testing aspects of dental materials, dentin bonding, restorations, and adhesion promotion. This book reflects the cumulative wisdom of many world-renowned researchers and provides a useful reference to anyone involved in the various aspects of dentistry.
In the 20 years since the pilot plant experiments used to develop the concept of electroviscoelasticity, inroads have been made in the understanding of its many related processes. Interfacial Electroviscoelasticity and Electrophoresis meets a massive scientific challenge by presenting deeper research and developments in the basic and applied science and engineering of finely dispersed particles and related systems. Introducing more profound and in-depth treatises related to the liquid-liquid finely dispersed systems (i.e., emulsions and double emulsions), this book describes a new theory developed through the authors' work. These findings are likely to impact other research and applications in a wide array of other fields, considering that the modeling of liquid-liquid interfaces is key to numerous chemical manufacturing processes, including those used for emulsions, suspensions, nanopowders, foams, biocolloids, and plasmas. The authors cover phenomena at the micro, nano, and atto-scales, and their techniques, theory, and supporting data will be of particular interest to nanoscientists, especially with regard to the breaking of emulsions. This groundbreaking book: Takes an interdisciplinary approach to elucidate the momentum transfer and electron transfer phenomena Covers less classical chemical engineering insight and modern molecular and atomic engineering Reviews basic theory of electrokinetics, using the electrophoresis of rigid particles as an example Built around the central themes of hydrodynamic, electrodynamic, and thermodynamic instabilities that occur at interfaces, this book addresses recently developed concepts in the physics, chemistry, and rheological properties of those well-studied interfaces of rigid and deformable particles in homo- and hetero-aggregate dispersed systems. The book also introduces the key phenomenon of electrophoresis, since it is widely adopted either as an analytical tool to characterize the surface properties of colloid-sized particles or in the separation and purification process of both laboratory and industrial scales. The applications and implications of the material presented in the book represent a major contribution to the advanced fundamental, applied, and engineering research of interfacial and colloidal phenomena.
Covering all aspects of photodynamic therapy, 70 expert contributors from the fields of photochemistry, photobiology, photophysics, pharmacology, oncology and surgery, provide multidisciplinary discussions on photodynamic therapy - a rapidly-developing approach to the treatment of solid tumours.;Photodynamic Therapy: Basic Principles and Clinical Applications describes the molecular and cellular effects of photodynamic treatment; elucidates the complex events leading to photodynamics tissue destruction, particularly vascular and inflammatory responses; discusses the principles of light penetration through tissues and optical dosimetry; examines photosensitizer pharmacology and delivery systems; reviews in detail photosensitizer structure-activity relationships; illustrates novel devices that aid light dosimetry and fluorescence detection; and extensively delineates clinical applications, including early diagnosis and treatment.;A comprehensive and up-to-date reference, this book should be useful for oncologists, pharmacologists, surgeons, photobiologists, optical engineers, laser technicians, biologists, physicists, chemists and biochemists involved in cancer research, as well as graduate-level students in these disciplines. |
![]() ![]() You may like...
PLP_Supply Chain Management:Strategy…
Sunil Chopra
Digital product license key
R1,949
Discovery Miles 19 490
|