![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electrochemistry.
The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.
This work explores the scope and flexibility afforded by integrated quantum photonics, both in terms of practical problem-solving, and for the pursuit of fundamental science. The author demonstrates and fully characterizes a two-qubit quantum photonic chip, capable of arbitrary two-qubit state preparation. Making use of the unprecedented degree of reconfigurability afforded by this device, a novel variation on Wheeler's delayed choice experiment is implemented, and a new technique to obtain nonlocal statistics without a shared reference frame is tested. Also presented is a new algorithm for quantum chemistry, simulating the helium hydride ion. Finally, multiphoton quantum interference in a large Hilbert space is demonstrated, and its implications for computational complexity are examined.
Surface engineering is an increasingly important field and consequently those involved need to be aware of the vast range of technologies available to modify surfaces. This text provides an up-to-date, authoritative exposition of the major condensed phase methods used for producing metallurgical and ceramic coatings. Each method is discussed thoroughly by an expert in that field. In each chapter the principle of the method, its range of applications and technical aspects involved are described. The book not only informs the reader about established technologies familiar only to specialists, but also details activity on the frontier of coating technology providing an insight into those potential technologies not yet fully developed but which should emerge in the near future.
This volume covers both basic and advanced aspects of organometallic chemistry of all metals and catalysis. In order to present a comprehensive view of the subject, it provides broad coverage of organometallic chemistry itself. The catalysis section includes the challenging activation and fictionalization of the main classes of hydrocarbons and the industrially crucial heterogeneous catalysis. Summaries and exercises are provides at the end of each chapter, and the answers to these exercises can be found at the back of the book. Beginners in inorganic, organic and organometallic chemistry, as well as advanced scholars and chemists from academia and industry will find much value in this title.
Oxygenases have been the subject of much study and are of great interest and application. Biomimetic chemistry of oxygenases has yielded clarification of enzyme structures and reaction mechanisms and has also led to the development of synthetic oxygenation processes. This volume contains 8 chapters written by leading researchers which together present an overview of di- and mono-oxygenases and their model systems from the point of view of functions, structures and mechanisms. An up-to-date clarification of structures around active centres of heme- and nonheme-oxygenases is given with reference to the design of model complexes. Various contributions also discuss in detail the formation, structure and reactivity of metal-oxygen and metal-substrate species in both enzyme and model systems. The contents of the volume address the interface between bioinorganic chemistry and homogeneous catalysis and contains much to emphasize the importance of catalytic studies in bio- and biomimetic chemistry. Audience: Research chemists interested in the use of oxygenases in catalysis.
Almost all contemporary organic synthesis involve transition metal
complexes as catalysts or particular reagents. The aim of this book
is to provide the reader with detailed accounts of elementary
processes within molecular catalysis to allow its development and
as an aid in designing novel catalytic systems. The book comprises
authoritative reviews on elementary processes from experts working
at the forefront of organometallic chemistry.
Separation technologies are of crucial importance to the goal of significantly reducing the volume of high-level nuclear waste, thereby reducing the long-term health risks to mankind. International co-operation, including the sharing of concepts and methods, as well as technology transfer, is essential in accelerating research and development in the field. The writers of this book are all internationally recognised experts in the field of separation technology, well qualified to assess and criticize the current state of separation research as well as to identify future opportunities for the application of separation technologies to the solution of nuclear waste management problems. The major emphases in the book are research opportunities in the utilization of innovative and potentially more efficient and cost effective processes for waste processing/treatment, actinide speciation/separation methods, technological processing, and environmental restoration.
We are pleased to present the ?fth volume of Progress in Ultrafast Intense LaserScience.Asthefrontiersofultrafastintenselasersciencerapidlyexpand ever outward, there continues to be a growing demand for an introduction to this interdisciplinary research ?eld that is at once widely accessible and ca- ble of delivering cutting-edge developments. Our series aims to respond to this call by providing a compilation of concise review-style articles written by researchers at the forefront of this research ?eld, so that researchers with d- ferent backgrounds as well as graduate students can easily grasp the essential aspects. As in the previous volumes of PUILS, each chapter of this book begins with an introductory part, in which a clear and concise overview of the topic and its signi?cance is given, and moves onto a description of the authors' most recent research results. All the chapters are peer-reviewed. The articles ofthis?fth volumecovera diverserangeofthe interdisciplinaryresearch?eld, and the topics may be grouped into three categories: coherent responses of gaseousand condensed matter to ultrashortintense laser pulses (Chaps. 1-4), propagationof intense laser pulses (Chaps. 5, 6), and laser-plasma interaction and its applications (Chaps. 7-10). From the third volume, the PUILS series has been edited in liaison with the activities of Center for Ultrafast Intense Laser Science in The University of Tokyo, and JILS (Japan Intense Light Field Science Society), the latter of which has also been responsible for sponsoring the series and making the regularpublicationofitsvolumespossible.Fromthe presentvolume,the C- sortiumonEducationandResearchonAdvancedLaserScience,theUniversity of Tokyo, joins this publication activity as one of the sponsoring programs.
Prof. Baev presents in his book the development of the thermodynamic theory of specific intermolecular interactions for a wide spectrum of organic compounds: ethers, ketones, alcohols, carboxylic acids, and hydrocarbons. The fundamentals of an unconventional approach to the theory of H-bonding and specific interactions are formulated based on a concept of pentacoordinate carbon atoms. New types of hydrogen bonds and specific interactions are substantiated and on the basis of the developed methodology their energies are determined. The system of interconnected quantitative characteristics of the stability of specific intermolecular interactions is presented. The laws of their transformations are discussed and summarized. The new concept of the extra stabilizing effect of isomeric methyl groups on the structure and stability of organic molecules is introduced and the destabilization action on specific interactions is outlined.
Microemulsions and gels are well-known systems, which play a major role in colloidal and interfacial science. In contrast, the concept of gel microemulsions is still quite new. Gelled microemulsions are highly promising for microemulsion applications in which low viscosity is undesirable, such as administering a drug-delivering microemulsion to a certain area of the skin. It is essential to understand the properties of and structures formed in a system combining microemulsion components and a gelator. This PhD thesis by Michaela Laupheimer provides an in-depth discussion of the phase behavior and sol-gel transition of a microemulsion gelled by a low molecular weight gelator as well as the rheological behavior of a gelled bicontinuous microemulsion. Moreover, the microstructure of the gelled bicontinuous system is fully clarified using techniques like self-diffusion NMR and small angle neutron scattering (SANS). By comparing gelled bicontinuous microemulsions with corresponding non-gelled microemulsions and binary gels, it is demonstrated that bicontinuous microemulsion domains coexist with a gelator network and that the coexisting structures possess no fundamental mutual influence. Hence, gelled bicontinuous microemulsions have been identified as a new type of orthogonal self-assembled system.
Supercritical fluids which are neither gas nor liquid, but can be compressed gradually from low to high density, are gaining increasing importance as tunable solvents and reaction media in the chemical process industry. By adjusting the pressure, or more strictly the density, the properties of these fluids are customized and manipulated for the particular process at hand, be it a physical transformation, such as separation or solvation, or a chemical transformation, such as a reaction or reactive extraction. Supercritical fluids, however, differ from both gases and liquids in many respects. In order to properly understand and describe their properties, it is necessary to know the implications of their nearness to criticality, to be aware of the complex types of phase separation (including solid phases) that occur when the components of the fluid mixture are very different from each other, and to develop theories that can cope with the large differences in molecular size and shape of the supercritical solvent and the solutes that are present.
The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago."
This book is devoted to a general discussion about localization and delocalization in quantum chemistry. The first volume is concerned with molecules in their ground state. It is made of papers presented during the academic year 73-74 at an international seminar organized by some members of the 'Centre de Mecanique Ondulatoire Appli- quee du C.N.R.S.' and some members of the 'Laboratoire de Chimie Quantique de l'Institut de Biologie Physico-Chimique'. It contains also reports of discussions which followed the presentation of invited papers. It is a 'forum' in which each expert gives his opinion on a work in progress. The volume is divided into four parts. The first one is a statistical analysis of the localizability of molecular electrons in the three-dimensional space. It contains an exposition of the basic ideas of the loge theory which provides a framework to do such an analysis. The second part is concerned with the separability of a molecular wave function and its expression in terms of localized elements. An exploration is made of the rela- tionship between the localizability of electrons and the possibility of expressing the wave function in terms of localized orbitals. The third part is devoted to the partition of the energy in local contributions.
Computational Modelling of Homogeneous Catalysis is an extensive collection of recent results on a wide array of catalytic processes. The chapters are, in most cases, authored by the researchers who have performed the calculations. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest, including: -olefin polymerization; This book facilitates understanding by experimental chemists in the field on what has already been accomplished and what can be expected from calculations in the near future. In addition, the book provides computational chemists with a first-hand knowledge on the state of the art in this exciting field.
This volume provides a compact presentation of modern statistical physics at an advanced level, from the foundations of statistical mechanics to the main modern applications of statistical physics. Special attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems. This second, revised edition is expanded with biographical notes contextualizing the main results in statistical physics.
This volume documents the scientific events of the NATO Advanced Research Workshop (ARW) on The Preparation of Nanoparticles in Solutions and in Solids. The ARW was held in the second largest city in Hungary, Szeged, truthfully referred to as "the city of sunshine," from March 8 to March 13, 1996. The seventy-seven participants, including seventeen students, came from twentyone different countries. Housing all participants together and arranging a number of social activities fostered lively discussions both inside and outside of formal sessions. Twenty-one key lectures were presented in five sessions. Each session was followed by a fortyfive minutes of general discussion. One evening was devoted to the presentation of fifty-five posters. Thirty-two contribution were submitted and accepted for publication in the present volume. The volume also contains the minutes of the discussions, and a summary of the conclusions of the working groups. The ARW was organized under the auspices and financial support of NATO, City of Szeged, European Research Office of the US Army, Hungarian Academy of Sciences, Hungarian National Committee for Technological Development (OMBF), International Association of Colloid and Interface Scientists IACIS, and National Science Foundation (NSF). Both the organizers and participants gratefully acknowledge the generous support of the agencies. The Editors also thank the high quality and creative contributions of the participants. It is they who made this volume a reality. Janos H. fendler Irnre Dekany ix Glossary of Some Names and Acronyms Advanced Materials Man-made materials having superior mechanical, thennal, electrical, optical, and other desirable properties.
Proteins are the functional units of the cellular machinery and they provide significant information regarding the molecular basis of health and disease. Therefore, techniques to separate and isolate the various proteins are critical to studying and understanding their functional characteristics. One of the widely used techniques for this purpose is electrophoresis. In Protein Electrophoresis: Methods and Protocols, contributions from experts in the field have been collected in order to provide practical guidelines to this complex study. Each chapter outlines a specific electrophoretic variant in detail so that laboratory scientists may perform a technique new to their lab without difficulty. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Electrophoresis: Methods and Protocols seeks to serve laboratory scientists with well-honed, detailed methodologies in an effort to further our knowledge of this essential field.
The theme of 'escape from metastable states', either via noise-assisted hop- ping and/or quantum tunneling, is pivotal to many scientific disciplines. It impacts on suchdiversephysical,chemicalandbiologicalprocessesasdiffu- sion in solids, chemical reactions per se, nucleation phenomenaand transfer ofmatter and information in biologicalcomplexes, to name only a few. With 'New Trends in Kramers' Reaction Rate Theory' this book fills yet another part of the multifaceted scope which underpins the Understanding of Chemical Reactivity. Since the publication of the comprehensive review about reaction rate theory in Rev. Mod. Phys. 52, 251 (1990) the field has witnessed many majordevelopments and extensions both in experiment and theory. In this book the focus will be on the theoretical progress. In doing so, the editorscollected aseries ofauthoritative articles from majorpractitioners in the field which as a whole give a representative- although notcomplete- sample ofthe novel recenttheoretical advances. As an inevitable consequence, the editors recognize that not all readers will wish to digest the volume in its entirety. We trust, however, that the reader will be able to choose from the many methods and techniques which he is interested in, and which he requires to perform his own new research in this area. There is the consistent underlying theme of noise-assisted barrier crossing that is running through all of the book. Nevertheless, each chapter should be considered as self contained. In this spirit the editors share the confident beliefthat the future research on the Kramers problem, and related topics, will be invigorated by the selectedcontributions herein.
This book represents a collection of lectures presented at the NATO Advanced study Institute(ASI) on "Chemistry & Physics of the Molecular Processes in Energetic Materials," held at Hotel Torre Normanna, Altavilla Milicia, Sicily, Italy, September 3 to 15, 1989. The institute was attended by seventy participants including twenty lecturers, drawn from thirteen countries. The purpose of the institute was to review the major ad vances made in recent years in the theoretical and experi mental aspects of explosives and propellants. In accordance with the format of the NATO ASI, it was arranged to have a relatively small number of speakers to present in depth, re view type lectures emphasizing the basic research aspects of the subject, over a two week period. Most of the speakers gave two lectures, each in excess of one hour with addition al time for discussions. The scope of the meeting was limit ed to molecular and spectroscopic studies since the hydro dynamic aspects of detonation and various performance crite ria of energetic materials are often covered adequately in other international meetings. An attempt was made to have a coherent presentation of various theoretical, computational and spectroscopic approaches to help a better understanding of energetic materials from a molecular point of view. The progress already made in these areas is such that structure property (e. g."
Biological chemistry has changed since the completion of the human genome project. There is a renewed interest and market for individuals trained in biophysical chemistry and molecular biophysics. The Physical Basis of Biochemistry, Second Edition, emphasizes the interdisciplinary nature of biophysical chemistry by incorporating the quantitative perspective of the physical sciences without sacrificing the complexity and diversity of the biological systems, applies physical and chemical principles to the understanding of the biology of cells and explores the explosive developments in the area of genomics, and in turn, proteomics, bioinformatics, and computational and visualization technologies that have occurred in the past seven years. The book features problem sets and examples, clear illustrations, and extensive appendixes that provide additional information on related topics in mathematics, physics and chemistry.
Structures, Bonding and Hydrogen Bonds, by Kun Dong, Qian Wang, Xingmei Lu, Suojiang Zhang Aggregation in System of Ionic Liquids, by Jianji Wang, Huiyong Wang Dissolution of Biomass Using Ionic Liquids, by Hui Wang, Gabriela Gurau, Robin D. Rogers Effect of the Structures of Ionic Liquids on Their Physical-Chemical Properties, by Yu-Feng Hu, Xiao-Ming Peng Microstructure study of Ionic liquids by spectroscopy, by Haoran Li Structures and Thermodynamic Properties of Ionic Liquids, by Tiancheng Mu, Buxing Han
The thesis by Merce Pacios exploits properties of carbon nanotubes to design novel nanodevices. The prominent electrochemical properties of carbon nanotubes are used to design diverse electrode configurations. In combination with the chemical properties and (bio)functionalization versatility, these materials prove to be very appropriate for the development of electrochemical biosensors. Furthermore, this work also evaluates the semiconductor character of carbon nanotubes (CNT) for sensor technology by using a field effect transistor configuration (FET). The CNT-FET device has been optimized for operating in liquid environments. These electrochemical and electronic CNT devices are highly promising for biomolecule sensing and for the monitoring of biological processes, which can in the future lead to applications for rapid and simple diagnostics in fields such as biotechnology, clinical and environmental research.
The development of "high-tech" materials in contemporary industries is deeply related to a detailed understanding of specific surface properties of catalysts which make particular reactions possible. But this understanding presupposes that there exists a body of theory capable of explaining situations not easily accessible to experimental methods and of relating experimental findings among themselves and with theoretical constructs. For these reasons, theoretical developments in surface physics and surface chemistry of transition metal compounds have been of paramount importance in promoting progress in catalysis, electronic devices, corrosion, etc. Although a great variety of spectroscopic methods for analyzing solids and surfaces at molecular scale have been introduced in recent years, nevertheless, many questions about the adsorption sites and intermediates, the effect of promoters, the poisoning of active sites, the nature of segregation of impurities, the process of surface reconstruction, the mechanisms of reactions, etc. have remained unanswered simply because of the great complexity of surface phenomena. It is in this sense that quantum mechanical method- combined with experimental data - may shed some light on the microscopic properties of new surface materials. |
You may like...
Vermont : A Guide to the Green Mountain…
Federal Writers' Project
Hardcover
Hydrogen Materials Science and Chemistry…
T.Nejat Veziroglu, Svetlana Yu Zaginaichenko, …
Hardcover
R7,773
Discovery Miles 77 730
Pluralism and Democracy in India…
Wendy Doniger, Martha C. Nussbaum
Hardcover
R3,850
Discovery Miles 38 500
|