![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
Over the past few years there has been a significant growth in the commercial application of a variety of processes which are all essentially based upon the very rapid heat treatment of powdered solid material in dilute gas suspensions. The objective of flash heating is usually to create a desirable product by means of physical and/or chemical transformations in the solid phase, usually with a high degree of control and with lower specific energy consumption than dense phase systems. Examples of successful flash reaction processing are to be found in the areas ofpyrometallurgy, mineral processing, plasma processing and, most recently, rapid prototyping. These developments have been based on, and have inspired, an expansion in fundamental research activities. As our understanding of flash reaction technology improves so does the need increase for the review of progress and the dissemination of accumulated knowl edge. Previous stocktaking on selected areas of flash reaction technology occurred in 1988 and can be found in the proceedings of three conferences held in that year: Flash Reaction Processes, Eds. D.G.C.Robertson, H.y'Sohn and N.J.Themelis, published by the Center for Pyrometallurgy, University of Missouri-Rolla, Rolla, MO 65401-0249; Production and Processing of Fine Particles, Ed. A.J .Plumpton, Pergamon Press, LeN 88-22755; High Temperature Dust-Laden Jets in Plasma Technology, Eds. O.P.Solonenko and A.I.Fedorchenko, VSP, Utrecht, ISBN 90- 6764-120-0."
This volume discusses the theoretical fundamentals and potential applications of the original electro-Fenton (EF) process and its most innovative and promising versions, all of which are classified as electrochemical advanced oxidation processes. It consists of 15 chapters that review the latest advances and trends, material selection, reaction and reactor modeling and EF scale-up. It particularly focuses on the applications of EF process in the treatment of toxic and persistent organic pollutants in water and soil, showing highly efficient removal for both lab-scale and pre-pilot setups. Indeed, the EF technology is now mature enough to be brought to market, and this collection of contributions from leading experts in the field constitutes a timely milestone for scientists and engineers.
Cryocoolers 10 is the premier archival publication of the latest advances and performance of small cryogenic refrigerators designed to provide localized cooling for military, space, semi-conductor, medical, computing, and high-temperature superconductor cryogenic applications in the 2-200 K temperature range. Composed of papers written by leading engineers and scientists in the field, Cryocoolers 10 reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.
This volume presents a sequence of articles which describe the theoretical treat ments of investigating the fundamental features in the electronic structures and properties of typical quasi-one-dimensional solids; organic conductor TTF-TCNQ, polyacetylene, metallic and superconducting polymer (SN)n and linear chain chal cogenides and halides of transition elements including NbSe3' The aim of this volume is not to present an exhaustive review but rather to touch on a selective class of problems which appear to be fundamental for typical quasi-one-dimensional solids. Thus the topics in this volume are rather confined to the key basic properties of quasi-one-dimensional systems. The quasi-one-dimensional solids are one of the most extensively investigated subjects in current physics, chemistry and materials science. These materials are unique in attracting a broad range of scientists, chemists, experimental and theore tical physicists, materials scientists and engineers. In 1954 Frohlich constructed a theory of superconductivity based on a one-dimensional model of moving charge density waves. In 1955 Peierls predicted that anyone-dimensional metal is unstable against the distortion of a periodic lattice so that a metal-nonmetal transition occurs at a certain temperature for a one-dimensional metal. According to these theories a gap is opened at the Fermi surfaces of one-dimensional conductors at low tempera tures and the charge density wave is created in connection with the occurrence of the gap."
The conventional solvents used in chemical, pharmaceutical, biomedical and separation processes represent a great challenge to green chemistry because of their toxicity and flammability. Since the beginning of "the 12 Principles of Green Chemistry" in 1998, a general effort has been made to replace conventional solvents with environmentally benign substitutes. Water has been the most popular choice so far, followed by ionic liquids, surfactant, supercritical fluids, fluorous solvents, liquid polymers, bio-solvents and switchable solvent systems. Green Solvents Volume I and II provides a throughout overview of the different types of solvents and discusses their extensive applications in fields such as extraction, organic synthesis, biocatalytic processes, production of fine chemicals, removal of hydrogen sulphide, biochemical transformations, composite material, energy storage devices and polymers. These volumes are written by leading international experts and cover all possible aspects of green solvents' properties and applications available in today's literature. Green Solvents Volume I and II is an invaluable guide to scientists, R&D industrial specialists, researchers, upper-level undergraduates and graduate students, Ph.D. scholars, college and university professors working in the field of chemistry and biochemistry.
"Physical Chemistry in Depth" is not a stand-alone text, but complements the text of any standard textbook on "Physical Chemistry" into depth having in mind to provide profound understanding of some of the topics presented in these textbooks. Standard textbooks in Physical Chemistry start with thermodynamics, deal with kinetics, structure of matter, etc. The "Physical Chemistry in Depth" follows this adjustment, but adds chapters that are treated traditionally in ordinary textbooks inadequately, e.g., general scaling laws, the graphlike structure of matter, and cross connections between the individual disciplines of Physical Chemistry. Admittedly, the text is loaded with some mathematics, which is a prerequisite to thoroughly understand the topics presented here. However, the mathematics needed is explained at a really low level so that no additional mathematical textbook is needed.
Catalysis for Enabling Carbon Dioxide Utilization, Volume 70 in the Advances in Catalysis series highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics, including Catalytic nonreductive CO2 conversions to facilitate fine chemical synthesis, Electrochemical transformation of CO2 into methanol, Electrocatalytic routes towards Carbon Dioxide Activation and Utilization, Visible-light photoredox-catalyzed organic transformations with CO2, Heterogeneous catalysis for the conversion of CO2into cyclic and polymeric carbonates, and Catalytic synthesis of biosourced organic carbonates and sustainable hybrid materials from CO2.
This unique book is at the nexus of modern software programming practices and electrochemical process engineering. It is the authoritative text on developing open source software for many applications, including: * fuel cells; * electrolyzers; and * batteries. Written by experts in the field in the open source computational fluid dynamics (CFD) code suite OpenFOAM, this book is intended for process engineering professionals developing practical electrochemical designs for industry, as well as researchers focused on finding tomorrow's answers today. The book covers everything from micro-scale to cell-scale to stack-scale models, with numerous illustrations and programming examples. Starting from a clear explanation of electrochemical processes and simple illustrative examples, the book progresses in complexity through a range of diverse applications. After reading this book, the reader is able to take command and control of model development as an expert. The book is aimed at all engineers and scientists with basic knowledge of calculus and programming in C++.
The bond valence model, a description of acid-base bonding, is widely used for analysing and modelling the structures and properties of solids and liquids. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and is accessible to anyone with a pocket calculator and a secondary school command of chemistry and physics. This new edition of 'The Chemical Bond in Inorganic Chemistry: The Bond Valence Model' shows how chemical properties arise naturally from the conflict between the constraints of chemistry and those of three-dimensional space. The book derives the rules of the bond valence model, as well as those of the traditional covalent, ionic and popular VSEPR models, by identifying the chemical bond with the electrostatic flux linking the bonded atoms. Most of the new edition is devoted to showing how to apply these ideas to real materials including crystals, liquids, glasses and surfaces. The work includes detailed examples of applications, and the final chapter explores the relationship between the flux and quantum theories of the bond.
This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron-ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity. Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between the photoelectron and the molecular ion to describe the ion's dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.
This book is an enthusiastic account of Pierre Laszlo's life and pioneering work on catalysis of organic reactions by modified clays, and his reflections on doing science from the 1960s to 1990s. In this autobiography, readers will discover a first-hand testimony of the chemical revolution in the second half of the 20th century, and the author's perspective on finding a calling in science and chemistry, as well as his own experience on doing science, teaching science and managing a scientific career. During this period, Pierre Laszlo led an academic laboratory and worked also in three different countries: the US, Belgium and France, where he had the opportunity to meet remarkable colleagues. In this book, he recalls his encounters and collaborations with important scientists, who shaped the nature of chemistry at times of increased pace of change, and collates a portrait of the worldwide scientific community at that time. In addition, the author tells us about the turns and twists of his own life, and how he ended up focusing his research on clay based chemistry, where clay minerals were turned in his lab to catalysis of key chemical transformations. Given its breath, the book offers a genuine information on the life and career of a chemist, and it will appeal not only to scientists and students, but also to historians of science and to the general reader.
The focus of this thesis is the computational modelling of transition metal bimetallic (nanoalloy) clusters. More specifically, the study of Pd-Pt, Ag-Pt, Au-Au and Pd-Au as a few tens of atoms in the gas phase. The author used a combination of global optimization techniques - coupled with a Gupta-type empirical many-body potential - and Density Functional Theory (DFT) calculations to study the structures, bonding and chemical ordering, as well as investigate the chemisorptions of hydrogen and carbon monoxide on bimetallic clusters. This research is highly relevant to experimental catalytic studies and has resulted in more than seven publications in international journals.
Except for digressions in Chapters 8 and 17, this book is a highly unified treatment of simple oscillations and waves. The phenomena treated are "simple" in that they are de scribable by linear equations, almost all occur in one dimension, and the dependent variables are scalars instead of vectors or something else (such as electromagnetic waves) with geometric complications. The book omits such complicated cases in order to deal thoroughly with properties shared by all linear os cillations and waves. The first seven chapters are a sequential treatment of electrical and mechanical oscillating systems, starting with the simplest and proceeding to systems of coupled oscillators subjected to ar bitrary driving forces. Then, after a brief discussion of nonlinear oscillations in Chapter 8, the concept of normal modes of motion is introduced and used to show the relationship between os cillations and waves. After Chapter 12, properties of waves are explored by whatever mathematical techniques are applicable. The book ends with a short discussion of three-dimensional vii viii Preface problems (in Chapter 16), and a study of a few aspects of non linear waves (in Chapter 17)."
Over the past twenty years, Catalysis by Heteropolyacids (HPAs) has received wide attention and led to new and promising developments both at academic and industrial level. In particular, heterogeneous catalysis is particularly attractive because it generally satisfies most of green chemistry's requirements. By emphasizing the development of third generation catalysts, this volume presents trends and opportunities in academic and industrial research. The book appeals to postgraduates, researchers, and chemists working in the field of environmentally benign catalysts as well as catalytic processes.
This book presents the synthetic methodologies as well as the properties and potential usage of various ruthenium-containing materials. Starting from the first examples of 'ruthenopolymers' reported in the 1970s to the 3D architectures now synthesized, these materials have shown their importance far beyond fundamental polymer science. As well as highlighting the remarkable properties and versatile applications, this book also addresses a key question related to the applications of such heavy-metal-containing materials from the perspective of achieving a sustainable future. This book is of interest to both materials scientists and chemists in academia and industry.
- Microporous Organic Polymers: Design, Synthesis, and Function By J.-X. Jiang and A. I. Cooper - Hydrogen, Methane and Carbon Dioxide Adsorption in Metal-Organic Framework Materials By X. Lin, N. R. Champness, and M. Schroeder -Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles By F. Schroeder and R. A. Fischer -Chiral Metal-Organic Porous Materials: Synthetic Strategies and Applications in Chiral Separation and Catalysis By K. Kim, M. Banerjee, M. Yoon, and S. Das -Controlled Polymerization by Incarceration of Monomers in Nanochannels By T. Uemura and S. Kitagawa -Designing Metal-Organic Frameworks for Catalytic Applications L. Ma and W. Lin -Magnetic and Porous Molecule-Based Materials By N. Roques, V. Mugnaini, and J. Veciana
This book describes different aspects of characterization and detection of nanomaterials in liquid disperse systems, such as suspensions, emulsions and suspoemulsions. Natural and technical particulate nanomaterials (NMs) are often present in formulations and products consisting of several disperse phases and complex dispersion media. Specific interfacial properties of the particles, their interactions with each other and with the dispersion medium, have to be considered. For example, the interfacial properties determine whether the particles tend to be arranged in aqueous or lipid phases or at their phase boundaries. The interfacial properties are significantly influenced by the adsorption of dissolved species, i.e., they depend on the composition of the dispersion medium. This poses great challenges for the characterization of these nanoparticle systems and requires adequate preparation methods. The nanoparticle measurement techniques aim at a deep physico-chemical understanding of the dispersity state of nanoparticle systems. Since the dispersity state of nanoparticle systems in an application usually does not correspond to their original manufacturing process, the formulation of new or improved product properties is of decisive importance. The characterization of nanoparticles in complex formulations or matrices requires an adequate sample preparation based on an existing or yet to be developed Standard Operating Procedure (SOP). The structure of the SOPs includes the dispersion regulations, which are of essential importance for comparing reproducible results of nanoparticle measurement with respect to comparability and transferability worldwide. The aim is to separate and isolate relevant NMs with knowledge of the interrelationships.
This volume presents the proceedings of the 1990 Advanced Study Institute entitled "Fundamentals of Gas Phase Ion Chemistry" held at Mont Ste. Odile , Alsace, France, 25th June -6th July, 1990. The Institute brought together over 100 physicists, physical and organic chemists working on a wide variety of topics with gas-phase ion chemistry as the common theme. Many different viewpoints, making use of very different experimental and theoretical approaches, were brought to bear on the subject and provided a stimulating and up-to-date account of the subject. Although the Institute was built around the invited lectures, many specific points were addressed in workshops which consisted of informal discussion groups which were organised by participants during the Institute. This volume therefore contains not only chapters based on the lectures but summaries of many of the workshops which adds considerably to the diversity of information presented. This Advanced Study Institute was the fifth in a series of NATO-sponsored institutes devoted to various aspects of the physics and chemistry of gas phase ions. These meetings have been held every four years since the first, held in Biarritz in 1974, considered "Interactions between Ions and Molecules". The five volumes which comprise the proceedings of these meetings illustrate very clearly the many advances in theory and experiment which have taken place over the last 20 years.
This textbook introduces the molecular side of physical chemistry. It offers students and practitioners a new approach to the subject by presenting numerous applications and solved problems that illustrate the concepts introduced for varied and complex technical situations. The book offers a balance between theory, tools, and practical applications. The text aims to be a practical manual for solving engineering problems in industries where processes depend on the chemical composition and physical properties of matter. The book is organized into three main topics: (I) the molecular structure of matter, (II) molecular models in thermodynamics, and (III) transport phenomena and mechanisms. Part I presents methods of analysis of the molecular behavior in a given system, while the following parts use these methods to study the equilibrium states of a material system and to analyze the processes that can take place when the system is in a state of non-equilibrium, in particular the transport phenomena. Molecular Physical Chemistry for Engineering Applications is designed for upper-level undergraduate and graduate courses in physical chemistry for engineers, applied physical chemistry, transport phenomena, colloidal chemistry, and transport/transfer processes. The book will also be a valuable reference guide for engineers, technicians, and scientists working in industry. Offers modeling techniques and tools for solving exercises and practical cases; Provides solutions and conclusions so students can follow results more closely; Step-by-step problem solving enables students to understand how to approach complex issues.
Over the last decade the environmental setup has changed for synthetic organ ic chemists to a considerable degree. So far synthetic organic chemistry had focussed on methodology development which mainly deals with the develop ment of new reactions as well as new reagents and catalysts. These ought to be able to perform preferentially highly selective (chemo-, regio-and stereose lective) synthetic transformations, often applied in the context of complex and highly functionalized molecules. Except for the synthesis of peptides and oligonucleic acids, little attention has been spent on the question of how synthesis can be carried out in an envi ronment of sophisticated technologies which includes improved hardware. While peptides and oligonucleotides are conveniently prepared by Merrifield's solid phase technique, solution phase synthesis of most other synthetic targets have not been substantially replaced by this solid phase approach. Without discussing this aspect in detail it is obvious that today a renaissance of sophis ticated solution phase synthesis can be noted. Immobilization of reagents and particularly catalysts, an old concept indeed, recently returned back onto the stage and this is addressed in this volume of Topics in Current Chemistry in a broader sense."
This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury "ionization scheme" development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
MICHAEL T. POPE AND ACHIM MULLER Department of Chemistry, Georgetown University, Washington, DC 20057-2222, U.S.A.; Department of Chemistry, University of Bielefeld, D-4BOO Bielefeld 1, F.R.G. Polyoxometalates, from their discovery and early development in the final decades of the 19th century to their current significance in disciplines as diverse as chemistry, mathematics, and medicine, continue to display surprisingly novel structures, unexpected reactivities and applications, and to attract increasing attention worldwide. Most of the contributors to the present volume participated in the workshop held at the Center for Interdisciplinary Research at the University of Bielefeld, July 15-17, 1992. The choice of topics illustrates some of the variety of directions and fields in which polyoxometalates can play an important role. Although many of the leading polyoxometalate research groups are represented here, we regret that time constraints, financial limitations, and in some cases difficulties of communication did not allow us to include significant and imp- tant work from other groups outside Europe and North America. In the following we briefly review the current status of the field of po- oxometalates. |
You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
R542
Discovery Miles 5 420
Wrestling with God - Jewish Theological…
Steven T. Katz, Shlomo Biderman, …
Hardcover
R5,430
Discovery Miles 54 300
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
|