![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
Development in science depends on several factors. Among these, the role of individual scientists is perhaps not the most important one. Science is typically a body of collective knowledge and any increase in the amount of this knowledge is certainly due to strong interaction among scientists. Even in the past, it happened quite rarely that a single person, without any aid of others, d- covered something fundamental or opened a new chapter in science. Great figures of science history have, in most cases, had rather a summarizing and s- thesizing role. This is especially valid over the last few decades. On one hand, the amount of information necessary to achieve new discoveries, has increased tremendously. On the other hand, improvement of technical facilities has increased the speed of information exchange. These factors resulted in a degree of specialization in science that had never seen before. Most of us are experts and specialists rather than scientists in the classical sense. My personal feeling is that, even nowadays, there is a strong need for professionals with a broad knowledge and c- prehensive mind, although they may not be competitive in the number of their publications or the sizes of their grants. Every time I have met such a person (I can count these cases on my fingers) I have become deeply influenced by his or her strong intellect.
Time-Resolved FTIR Emission Studies of Photochemical Reactions (G. Hancock & D. Heard). A Model for the Influence of Organized Media on Photochemical Reactions (V. Ramamurthy, et al.). Up-Scaling Photochemical Reactions (A. Braun, et al.). Photochemistry of the Xanthine Dyes (D. Neckers & O. Valdes-Aguilera). Indexes.
The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically."
This work describes novel, effective hydrogen-bond (HB) donor catalysts based on a known bifunctional tertiary amine-thiourea, a privileged structure, which has been proven to be one of the most widely used organocatalysts. These HB donor catalysts derived from quinazoline and benzothiadiazine were initially synthesized as novel HB donors with their HB-donating abilities being measured by analytical methods. They were found to be effective for a variety of asymmetric transformations including Michael reactions of a, b- unsaturated imides and hydrazination reactions of 1,3-dicarbonyl compounds. Thiourea catalysts that have an additional functional group are also described. Specifically, thioureas that bear a hydroxyl group were synthesized and subsequently used as novel bifunctional organocatalysts for catalytic, asymmetric Petasis-type reactions involving organoboronic acids as nucleophiles. These addition reactions were difficult to achieve using existing organocatalysts. One of the developed catalytic methods can be applied to the synthesis of biologically interesting peptide- derived compounds possessing unnatural vinyl glycine moieties. These findings introduce new criteria required for the development of organocatalysts for asymmetric reactions, thus making a significant contribution to the field of organocatalysis.
This book covers broad aspects of the chemistry of -stacked polymers and low-molecular-weight molecules, from synthesis through theory. It is intended for graduate students and researchers in academia and industry and consists of chapters written by renowned scientists who have made significant contributions to this field in the past decade. -Stacked polymers and low-molecular-weight molecules are expected to replace main-chain conjugated polymers such as polyacetylenes and polythiophenes as organic conducting and energy-transferring substances that are important as materials for photo-electronic applications. -Stacked polymers and molecules have significant advantages over main-chain conjugated polymers, i.e., high solubility in solvents, large freedom in molecular design, and colorless nature.
The Matching Method for Asymptotic Solutions in Chemical Physics
Problems by A. M. Il'in, L. A. Kalyakin, and S. I. Maslennikov
Timely, authoritative, and invaluable to researchers in all areas of chemical physics, Singular Perturbation Problems in Chemical Physics is an essential resource.
The development of "tailormade" electrode surfaces using electroactive polymer films has been one of the most active and exciting areas of electrochemistry over the last 15 years. The properties of these materials have been examined by a wide range of scientists from a variety of perspectives, and now electroactive polymer research is considered to be a reasonably mature area of research endeavor. Much is now understood about the fundamental mechanism of conduction in these materials. A wide range of electrochemical techniques may be used to probe the conductivity processes in these materials, and more recently, a number of in situ spectroscopic techniques have been used to further elucidate the structure of these materials. The in situ spectroscopies and allied techniques have also been used to obtain correlations between structure and redox activity. The applications found for electroactive polymers are many and varied, and range from thin film amperometric chemical and biological sensors, electrocatalytic systems, drug delivery devices, and advanced battery systems through to molecular electronic devices. The research literature on electroactive polymers is truly enormous and can daunt even the most hardened researcher. The vast quantity of material reported in the literature can also intimidate beginning graduate students. Hence the present book. The original idea for this book arose as a result of a series of lectures on chemically modified eiectrodes and electroactive polymers given by the writer to final-year undergraduates at Trinity College Dublin.
This book had its nucleus in some lectures given by one of us (J. O'M. B. ) in a course on electrochemistry to students of energy conversion at the University of Pennsyl- nia. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all of whom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry which could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importance. Thus, conversion to electrochemically powered transportation systems appears to be an important step by means of which the difficulties of air pollution and the effects of an increasing concentration in the atmosphere of carbon dioxide may be met. Cor- sion is recognized as having an electrochemical basis. The synthesis of nylon now contains an important electrochemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of American organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the United States.
Protein glycosylation is now acknowledged as a major posttranslational modification with significant effects on protein folding, conformation distri- bution, stability, and activity. The added oligosaccharide chains are large and diverse and have specific recognition motifs important in many aspects of cell interactions and regulation. As such, there is a growing need to communicate the analytical methods of the specialist carbohydrate chemist, biochemist, and physicochemist to protein experts and the pharmaceutical industry. Other areas that come under the influence of the glycosciences are DNA interactions with ubiquitous saccharide-containing antibiotics and antitumor drugs; inhibitors of viral infection; bacterial, mycobacterial, and parasite antigens; glycolipids; glycophosphatidylinositol protein membrane anchors; and (glyco)protein- proteoglycan interactions. Compared to the first edition of this book, Glycopro- tein Analysis in Biomedicine, less emphasis is given to biomedical aspects, but these chapters are still pertinent today. The significant differences in the con- tent relate to advances in analysis relevant to biotechnology; for example, the production of recombinant glycoproteins and other therapeutics. It must also not be forgotten that the methods here described in Glycoanalysis Protocols are relevant to exploiting the commercial potential of carbohydrates in fields related to agriculture, food, and the domestic and chemical industries. The emphasis of the book remains in bringing the glycosciences into mainstream biochemistry. The analytical methods covered in Glycoanalysis Protocols are the re- sult of experts translating their life's works into easy-to-follow recipes.
This book presents an up to date review of many aspects of Interfacial Electrochemistry and points direction of future developments. Traditional routes for the study of the electrochemical interface are reviewed, critically discussed and the available experimental data is analysed. Complementary information is presented as obtained from the sucessful application of the various in-situ reflectance spectroscopies. The use of single crystal face electrodes to study the electrochemical interface is emphasized with particular relevan- ce to the technique to prepare clean surfaces. Some relevant re- sults obtained for single crystal face electrodes are presented. This book presents also the techniques to study other interfaces such-as the ionic-solution, immiscible liquid-liquid and gas-so- lid interfaces. The information gained 'is put in parallel to the solid-electrolyte solution interface. More specific aspects of the electrochemical interface are covered with chapters on phase-transitions occuring on 2D ad- sorbed layers and on electrochemical kinetics where the dependen- ce of the electrochemical rate parameters upon the solvent struc- ture and electrode material is emphasized. The final chapters reviews of the present state of solvent models interfaces and the recently developed theories of the eleGBP trochemical interfaces in which an association is made of models for the metal with the models for the electrolyte solution. This book is a result of a NATO A. S. 1. on "Trends in Interfacial Electrochemistry", held in Viana do Castelo from 2 to 13th July 1984 which brought together experts of the above men- tioned aspects of Interfacial Electrochemistry.
This book provides an interdisciplinary presentation of the current knowledge of pattern formation in complex system, with sufficiently many details, tools, and concrete examples to be useful for the graduate student or scientist entering this area of research.
This book tackles the problematic relationship between Platonic philosophy and Romantic poetry, between the intellect and the emotions. Drawing on contemporary critical theory, especially hermeneutics and deconstruction, the author shows that a dialogue between thinking and poetizing is possible. The volume yields many new insights into both Platonic and Romantic texts and forms an important work for scholars and students of Greek philosophy, Romantic literature and critical theory.
"Kinetics and Dynamics" on molecular modeling of dynamic processes opens with an introductory overview before discussing approaches to reactivity of small systems in the gas phase. Then it examines studies of systems of increasing complexity up to the dynamics of DNA. This title has interdisciplinary character presenting wherever possible an interplay between the theory and the experiment. It provides basic information as well as the details of theory and examples of its application to experimentalists and theoreticians interested in modeling of dynamic processes in chemical and biochemical systems. All contributing authors are renowned experts in their fields and topics covered in this volume represent the forefront of today s science."
David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.
"Astrochemistry and Astrobiology" is the debut volume in the new series "Physical Chemistry in Action." Aimed at both the novice and experienced researcher, this volume outlines the physico-chemical principles which underpin our attempts to understand astrochemistry and predict astrobiology. An introductory chapter includes fundamental aspects of physical chemistry required for understanding the field. Eight further chapters address specific topics, encompassing basic theory and models, up-to-date research and an outlook on future work. The last chapter examines each of the topics again but addressed from a different angle. Written and edited by international experts, this text is accessible for those entering the field of astrochemistry and astrobiology, while it still remains interesting for more experienced researchers.
Photosensitization and photocatalysis refer to processes by which permanent chemical transformations are induced on substrates (organic/inorganic) by radiation to which the substrates themselves are transparent. Such transformations can be highly specific, very efficient, and occur under mild conditions. Herein lies the power of photochemical methods for possible applications in the field of conversion and storage of solar energy. This book provides a recent survey of the progress in this important area in catalysis, with an emphasis on inorganic complexes and organometallic compounds as the key light aborbers. The book is organized in three parts: fundamentals, followed by applications. Discussions cover a wide variety of photosensitized or photocatalyzed reactions: decomposition of water, reduction of CO2 and CO; spectral sensitization in photoelectrochemical cells; transformations (oxidation, reduction, isomerization, hydrogenation, dehydrogenation, carbonylation, etc.) of organics such as alkanes, alkenes, alcohols, etc. In view of the variety of systems (sensitizers, substrates) and the topics covered, the volume is unique in the field of photochemistry and will appeal to academic and industrial researchers in various subdisciplines of chemistry, material science and catalysis.
Square-wave voltammetry is a technique readily available to every researcher, scientist, engineer and practitioner applying modern electrochemical measurement systems. It is of beneficial use in analytical applications and in fundamental studies of electrode mechanisms. But the optimised exploitation of this technique is only possible for those with a detailed knowledge of signal generation and of the thermodynamics and kinetics involved. This volume, written by three distinguished experts, systematically delivers the complete and in-depth information that enables both researchers and users of square-wave voltammetry to apply this technique effectively. Square-Wave Voltammetry also offers an appendix on mathematical modeling and a chapter on the most important electrode mechanisms which briefly reviews the underlying theory and numerical formulae intrinsic for simulating experiments with popular software tools, e.g. Mathcad (R).
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology includes peer-reviewed contributions based on carefully selected presentations given at the 17th International Workshop on Quantum Systems in Chemistry, Physics, and Biology. New trends and state-of-the-art developments in the quantum theory of atomic and molecular systems, and condensed matter (including biological systems and nanostructures) are described by academics of international distinction.
This book explores the applications of ferroelectric materials in information technology by developing several prototype devices based on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals. It describes how an optothermal field-effect transistor (FET) was constructed on the PMN-26PT single crystal, using a MoS2 monolayer as the channel semiconductor material. This fusion of pyroelectric effect and the interface engineering of 2D materials provides an effective strategy for the 'photon revolution' of FET. An ultra-broadband photodetector (UV ~ THz) was monolithically integrated into a [111]-oriented PMN-28PT single crystal by using silver nanowires in the transparent top electrode. The photodetector showed a dramatic improvement in operation frequency up to 3 kHz: an order of magnitude higher than that of traditional pyroelectric photodetectors. A self-powered integrated module was demonstrated through the combination of a triboelectric nanogenerator and a ferroelectric FET. The stored information can easily be written in the memory system using mechanical energy, solving the power consumption problem with regard to information writing in ferroelectric nonvolatile memories. This book extends the applications of ferroelectric single crystals into areas other than piezoelectric devices, paving the way for exciting future developments.
Imposingly thick text derived from a one-semester course intended to acquaint advanced undergraduate (and beginning graduate) students with the concepts and methods of linear mathematics. Though physics is referred to in the title, the book is in almost every organizational and notational respect
Molecular ruthenium catalysts, during the last decade, have provided new indispensable synthetic methods that cannot be promoted by other catalysts, and they now constitute an emerging field for the selective preparation of fine chemicals. The major reaction types for carbon-carbon and carbon-heteroatom bond formation, most of them with atom economy, are comprehensively discussed by leading experts. The authors highlight the most important discoveries in ruthenium catalysis and propose activation processes, some of them being still controversial. They illustrate the innovation and usefulness in organic synthesis of specific reactions including carbocyclization, cyclopropanation, olefin metathesis, carbonylation, oxidation, transformation of silicon containing substrates, and show novel reactions operating via vinylidene intermediates, radical processes, inert bonds activation as well as catalysis in water. Therefore, the reader will receive a balanced view of this rapidly developing field.
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.
Elucidating Organic Reaction Mechanisms using photo-CIDNP Spectroscopy, by Martin Goez. Parahydrogen Induced Polarization by Homogeneous Catalysis: Theory and Applications, by Kerstin Munnemann et al. Improving NMR and MRI Sensitivity with Parahydrogen, by R. Mewis & Simon Duckett. The Solid-state Photo-CIDNP Effect, by Jorg Matysik et al. Parahydrogen-induced Polarization in Heterogeneous Catalytic Processes, by Igor Koptyug et al. Dynamic Nuclear Polarization Enhanced NMR Spectroscopy, by U. Akbey & H. Oschkinat. Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins, by Lars T. Kuhn."
Summarizes current recycling processes, challenges, and perspectives. Offers a comprehensive review of current commercialized LIB recycling companies. Showcases an innovative closed-loop hydrometallurgical recycling process to recycle lithium cathode materials. Provides detailed modelling and economic analysis of several hydrometallurgical recycling processes. Features practical cases and data developed by the authors. |
![]() ![]() You may like...
Foundation of Ethics-Based Practices…
Birthe Loa Knizek, Sven Hroar Klempe
Hardcover
R3,129
Discovery Miles 31 290
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
|