![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
During the past fifteen years there has been a dramatic increase in the number of different surfaces whose structures have been determined experimentally. For example, whereas in 1979 there were only 25 recorded adsorption structures, to date there are more than 250. This volume is therefore a timely review of the state-of-the-art in this dynamic field. Chapter one contains a compilation of the structural data base on surfaces within a series of tables that allows direct comparison of structural parameters for related systems. Experimental structural trends amongst both clean surfaces and adsorbate systems are highlighted and discussed. The next chapter outlines the successes of local density functional theory in predicting the relaxations and reconstructions of clean metal and semiconductor surfaces, and the behaviour of adsorbates such as hydrogen, oxygen and alkali elements on metal surfaces, thereby explaining some of the experimental trends observed within the database. These "ab initio" density functional calculations are of ground state properties at the absolute zero of temperature. Chapter three provides an introduction to finite temperature effects in a pedagogical review of current statistical mechanical treatments of phase transitions at surfaces, many of which display the prominent role of fluctuations or non-mean field behaviour. The final chapter discusses the relationship of the reactivity of a surface to its morphology and composition, which is particularly relevant to a fundamental understanding of catalysis.
Nanoscale Probes of the Solid--Liquid Interface deals with the use of the scanning tunnelling microscope (STM) and related instrumentation to examine the phenomena occurring at the interface between solid and liquid. Scanning probe microscopy (the collective term for such instruments as the STM, the atomic force microscope and related instrumentation) allows detailed, real space atomic or lattice scale insight into surface structures, information which is ideally correlated with surface reactivity. The use of SPM methods is not restricted to ultrahigh vacuum: the STM and AFM have been used on samples immersed in solution or in ambient air, thus permitting a study of environmental effects on surfaces. At the solid--liquid interface the reactivity derives precisely from the presence of the solution and, in many cases, the application of an external potential. Topics covered in the present volume include: the advantages of studying the solid--liquid interface and the obtaining of additional information from probe measurements; interrelationships between probe tip, the interface and the tunnelling process; STM measurements on semiconductor surfaces; the scanning electrochemical microscope, AFM and the solid--liquid interface; surface X-ray scattering; cluster formation on graphite electrodes; Cu deposition on Au surfaces; macroscopic events following Cu deposition; deposition of small metallic clusters on carbon; overpotential deposition of metals; underpotential deposition; STM on nanoscale ceramic superlattices; reconstruction events on Au(ijk) surfaces; Au surface reconstructions; friction force measurements on graphite steps under potential control; and the biocompatibility of materials.
In addition to structure formation in crystallizing polymers and semicrystalline polymers, this second edition completes the topic of transport phenomena. It also reviews solidification by crystallization during cooling and under flow or pressure, which all play an enormous role in polymer melt processing. Generally, there is an intensive interaction between three transport phenomena: heat transfer, momentum transfer (flow, rheology) and (flow induced) crystallization. The strong interaction between the three transport phenomena is a major challenge when it comes to experimentation, and advances in this area are detailed in the book, guiding further development of sound modeling. This book enables readers to follow an advanced course in polymer processing. It is a valuable resource for polymer chemists, applied physicists, rheologists, plastics engineers, mold makers and material scientists.
Principles of Molecular Mechanics Katsunosuke Machida Computational methods in chemistry have become increasingly important over recent years, and today many chemical laboratories in industry and academia are routinely applying the principles of molecular mechanics. This unique book, written from a theoretical chemist's point of view, brings together the mathematical and theoretical basis of calculations used in many molecular mechanics software tools, and will be indispensable for anyone using computational techniques. Principles of Molecular Mechanics contains a discussion of the fundamental analytical expressions used in calculating molecular properties from molecular force fields derived from a wide variety of mathematical and physical methods. Practical algorithms are outlined with an emphasis on speeding up calculation and saving computer memory, essential to researchers designing or improving computer programs for molecular mechanics. This book is essential reading for all researchers and graduate students working in molecular simulations, computational chemistry, theoretical chemistry and physical chemistry.
Sonochemistry is studied primarily by chemists and sonoluminescence mainly by physicists, but a single physical phenomenon - acoustic cavitation - unites the two areas. The physics of cavitation bubble collapse, is relatively well understood by acoustical physicists but remains practically unknown to the chemists. By contrast, the chemistry that gives rise to electromagnetic emissions and the acceleration of chemical reactions is familiar to chemists, but practically unknown to acoustical physicists. It is just this knowledge gap that the present volume addresses. The first section of the book addresses the fundamentals of cavitation, leading to a more extensive discussion of the fundamentals of cavitation bubble dynamics in section two. A section on single bubble sonoluminescence follows. The two following sections address the new scientific discipline of sonochemistry, and the volume concludes with a section giving detailed descriptions of the applications of sonochemistry. The mixture of tutorial lectures and detailed research articles means that the book can serve as an introduction as well as a comprehensive and detailed review of these two interesting and topical subjects.
Prof. Jerzy Sobkowski starts off this 31st volume of Modern Aspects of Electrochemistry with a far-ranging discussion of experimental results from the past 10 years of interfacial studies. It forms a good background for the two succeeding chapters. The second chapter is by S. U. M. Khan on quantum mechanical treatment of electrode processes. Dr. Khan's experience in this area is a good basis for this chapter, the contents of which will surprise some, but which as been well refereed. Molecular dynamic simulation is now a much-used technique in physical electrochemistry and in the third chapter Ilan Benjamin has written an account that brings together information from many recent publications, sometimes confirming earlier modeling approaches and sometimes breaking new territory. In Chapter 4, Akiko Aramata's experience in researching single crystals is put to good advantage in her authoritative article on under- tential deposition. Finally, in Chapter 5, the applied side of electrochemistry is served by Bech-Neilsen et al. in the review of recent techniques for automated measurement of corrosion. J. O'M. Bockris, Texas A&M University B. E. Conway, University of Ottawa R. E. White, University of South Carolina Contents Chapter 1 METAL/SOLUTION INTERFACE: AN EXPERIMENTAL APPROACH Jerzy Sobkowski and Maria Jurkiewicz-Herbich I. Introduction.............................................. 1 II. Molecular Approach to the Metal/Solution Interface............. 3 1. Double-Layer Structure: General Considerations .......... 3 2. Solid Metal/Electrolyte Interface.......................... 8 3. Methods Used to Study Properties ofthe Metal/Solution Interface: Role of the Solvent and the Metal............. 15 The Thermodynamic Approach to the Metal/Solution Interface 35 III.
This fourth volume in the series 'Physics and Chemistry of Materials with Layered Structures' is concerned with providing a critical review of the significant optical and electrical properties by established authors who have themselves made many significant contributions to these fields. Research into these materials has recently gained a new impetus and their fascinating properties have attracted many new research workers. These people should find much of value in the reviews contained in this volume and the editor is very much indebted for the painstaking and hard work put into the preparation of the various chapters by the authors. The optical properties provide useful information for deriving the band struc tures, a knowledge of which is required for an interpretation of measurements on the electronic properties. The chapters by Dr Evans, Dr Williams and Dr Bordas describe different techniques which have provided much detailed data on this subject. An interesting property of these materials is the comparative ease with which thin specimens may be prepared for these measurements and this is highlighted in the super conducting experiments outlined by Professor Frindt and Dr Huntley. These authors together with Dr Vandenberg's chapter on the magnetic properties also describe the interesting and significant intercalation mechanisms whereby a wide range of organic compounds and alkali metals may be incorporated in the lattice. This provides an additional parameter for varying the properties of these materials and may yet be seen to provide eventual possible applications of layer compounds."
Biological membranes play a central role in cell structure, shape and functions. However, investigating the membrane bilayer has proved to be difficult due to its highly dynamic and anisotropic structure, which generates steep gradients at the nanometer scale. Due to the decisive impact of recently developed fluorescence-based techniques, tremendous advances have been made in the last few years in our understanding of membrane characteristics and functions. In this context, the present book illustrates some of these major advances by collecting review articles written by highly respected experts. The book is organized in three parts, the first of which deals with membrane probes and model membranes. The second part describes the use of advanced quantitative and high-resolution techniques to explore the properties of biological membranes, illustrating the key progress made regarding membrane organization, dynamics and interactions. The third part is focused on the investigation of membrane proteins using the same techniques, and notably on the membrane receptors that play a central role in signaling pathways and therapeutic strategies. All chapters provide comprehensive information on membranes and their exploration for beginners in the field and advanced researchers alike.
Phenomena associated with the adhesion interaction of surfaces have been a critical aspect of micro- and nanosystem development and performance since the first MicroElectroMechanicalSystems(MEMS) were fabricated. These phenomena are ubiquitous in nature and are present in all systems, however MEMS devices are particularly sensitive to their effects owing to their small size and limited actuation force that can be generated. Extension of MEMS technology concepts to the nanoscale and development of NanoElectroMechanicalSystems(NEMS) will result in systems even more strongly influenced by surface forces. The book is divided into five parts as follows: Part 1: Understanding Through Continuum Theory; Part 2: Computer Simulation of Interfaces; Part 3: Adhesion and Friction Measurements; Part 4: Adhesion in Practical Applications; and Part 5: Adhesion Mitigation Strategies. This compilation constitutes the first book on this extremely important topic in the burgeoning field of MEMS/NEMS. It is obvious from the topics covered in this book that bountiful information is contained here covering understanding of surface forces and adhesion as well as novel ways to mitigate adhesion in MEMS/NEMS. This book should be of great interest to anyone engaged in the wonderful and fascinating field of MEMS/NEMS, as it captures the current R&D activity.
th The 13 Jerusalem Symposium on Quantum Chemistry and Bio- chemistry was dedicated to the memory of Ernst David Bergmann, one of the founders of this series of Symposia, at the occasion of the 5th anniversary of his death. The opening session was honored by the pre- sence of H. E. Yzhak Navon, President of the State of Israel and of Baron Edmond de Rothschild whose generous and constant support makes these Symposia possible. To both these distinguished guests we address the expression of our deep gratitude. Our thanks are also due to the Israel Academy of Sciences and Humanities, in particular to its President Professor Aryeh Dvoretzky and to the Hebrew University of Jerusalem for their hospita- lity and helpful association. I had the privilege this time to join efforts in the organi- zation of this Symposium with two distinguished American colleagues, Prof. P. O. P. Ts'o from Johns Hopkins University and Dr. Harry Gelboin from the National Institute for Cancer Research. I wish to thank them for their invaluable help and the two Institutions which they repre- sent for important financial support. th The subject of the 13 Jerusalem Symposium brings us back to that of the 1st Symposium held in 1967. The comparison of the two Proceedings enables us to evaluate the important developments which occurred in this field of research during the last 13 years.
The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.
This book focuses on the electronic properties of transition metals in coordination environments. These properties are responsible for the unique and intricate activity of transition metal sites in bio- and inorganic catalysis, but also pose challenges for both theoretical and experimental studies. Written by an international group of recognized experts, the book reviews recent advances in computational modeling and discusses their interplay using experiments. It covers a broad range of topics, including advanced computational methods for transition metal systems; spectroscopic, electrochemical and catalytic properties of transition metals in coordination environments; metalloenzymes and biomimetic compounds; and spin-related phenomena. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in both fundamental and application-oriented research in the field of transition metal systems.
Polyoxometalates (POMs) form a large, distinctive class of molecular inorganic compounds of unrivaled electronic versatility and structural variation, with impacts ranging from chemistry, catalysis, and materials science to biology, and medicine. This book covers the basic principles governing the structure, bonding and reactivity of these metal-oxygen cluster anions and the major developments in their molecular science. The book comprises three sections. The first covers areas ranging from topological principles via synthesis and stability to reactivity in solution. It also focuses on the physical methods currently used to extract information on the molecular and electronic structures as well as the physical properties of these clusters. The second part reviews different types of POMs, focusing on those systems that currently impact other areas of interest, such as supramolecular chemistry, nanochemistry and molecular magnetism. The third section is devoted to POM-based materials and their applications and prospects in catalysis and materials science.
This book highlights the development of novel metal-supported solid oxide fuel cells (MS-SOFCs). It describes the metal-supported solid oxide fuel cells (MS-SOFCs) that consist of a microporous stainless steel support, nanoporous electrode composites and a thin ceramic electrolyte using the "tape casting-sintering-infiltrating" method. Further, it investigates the reaction kinetics of the fuel cells' electrodes, structure-performance relationship and degradation mechanism. By optimizing the electrode materials, preparation process for the fuel cells, and nano-micro structure of the electrode, the resulting MS-SOFCs demonstrated (1) great output power densities at low temperatures, e.g., 1.02 W cm-2 at 600 DegreesC, when operating in humidified hydrogen fuels and air oxidants; (2) excellent long-term stability, e.g., a degradation rate of 1.3% kh-1 when measured at 650 DegreesC and 0.9 A cm-2 for 1500 h. The design presented offers a promising pathway for the development of low-cost, high power-density and long-term-stable SOFCs for energy conversion.
This book discusses the history of nuclear decommissioning as a science and industry. It explores the early, little-known period when the term "decommissioning" was not used in the nuclear context and the end-of-life operations of a nuclear facility were a low priority. It then describes the subsequent period when decommissioning was recognized as a separate phase of the nuclear lifecycle, before bringing readers up to date with today's state of the art. The author addresses decommissioning as a mature industry in an era in which large, commercial nuclear reactors and other fuel-cycle installations have been fully dismantled, and their sites returned to other uses. The book also looks at the birth, growth and maturity of decommissioning, focusing on how new issues emerged, how these were gradually addressed, and the lessons learned from them. Further, it examines the technologies and management advances in science and industry that followed these solutions. Nuclear Decommissioning is a point of reference for industry researchers and decommissioning practitioners looking to enrich their knowledge of decommissioning in recent decades as well as the modern industry. The book is also of interest to historians and students who wish to learn more about the history of nuclear decommissioning.
This book should be of interest to introductory and general text for students in chemistry, physical chemistry and physical sciences.
This book is the result of a NATO Advanced Research Workshop held in Vimeiro, Portugal, in May 1992. The objectives of this Workshop were: i) to promote exchange of knowledge between experts in various fields of discharge modeling, plasma diagnostics and microwave plasma applications; ii) to assess the state-of-the-art in this field from a multidisciplinary viewpoint; iii) to identify basic points needing clarification and to estab- lish basic guidelines for future research; iv) to compare the properties of microwave dis- charges to those of RF discharges, as plasma sources for specific applications. Most of the contributors to this book are well known scientists in the field of mi- crowave discharge sources, modeling, diagnostics and applications. The book provides an up-to-date review in this field which should be useful for both the fundamentalists and those using these systems in applications such as surface treatment and elemental analysis. We are gmteful to a number of organizations for providing the fmancial assistance that made the Workshop possible. Foremost is the NATO Scientific Affairs Division, which provided the major contribution for the Workshop. In addition, the following Por- tuguese sources made contributions: Instituto Nacional de Investiga~iio Cientifica, Junta Nacional de Investiga~iio Cientifica e Tecnologica, Centro de Electrodinamica da Univer- sidade Tecnica de Lisboa, Instituto Superior Tecnico, Banco Nacional Ultmmarino, and Regiiio de Turismo do Oeste.
The latest volume of reviews by researchers in academic and industrial laboratories contains five chapters. They cover a surface-science approach to the semiconductor/electrolyte interface, photovoltaic and photo-electrochemical cells based on Schottky barrier heterojunctions, the mechanisms of form
In previous volumes in this series, "Advances in Metal and
Semiconductor Clusters," the focus has been on atomic clusters of
metals, semiconductors and carbon. Fundamental gas phase studies
have been surveyed, and most recently scientists have explored new
materials which can be produced from clusters or cluster
precursors. In this latest volume, the focus shifts to clusters
composed primarily of non-metal molecules or atoms which have one
or more metal atoms seeded into the cluster as an impurity. These
clusters provide model systems for metal ion solvation processes
and metal-ligand interactions.
An outstanding international scientific event in the field of metathesis chemistry, the NATO ASI "Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology" has been recently organized in Bucharest, Romania (July 21- August 2, 2008). Numerous renowned scientists, young researchers and students, convened for two weeks to present and debate on the newest trends in alkene metathesis and identify future perspectives in this fascinating area of organic, organometallic, catalysis and polymer chemistry with foreseen important applications in materials science and technology. Following the fruitful practice of NATO Advanced Study Institutes, selected contributions covering plenary lectures, short communications and posters have been compiled in this special volume dedicated to this successful convention on green metathesis chemistry. General interest was primarily focused on relevant "green chemistry" features related to all types of metathesis reactions (RCM, CM, enyne metathesis, ADMET and ROMP). Diverse opportunities for green and sustainable technologies and industrial procedures based on metahesis have been identified. Largely exemplified was the utility of this broadly applicable strategy in organic synthesis, for accessing natural products and pharmaceuticals, and also its ability to fit in the manufacture of smart and nanostructured materials, self-assemblies with nanoscale morphologies, macromolecular engineering.
In the past, the analysis of materials containing several elements presented unique problems for analytical chemists, so a sequence of wet chemical qualitative tests were performed to ensure each element in a sample was detected. Quantitative tests could then be performed with confidence. Modern analytical chemists can call on a range of specialist instrumental techniques which can detect the presence of all elements, often all at once, and often quantitatively. The drawback is that the instruments tend to be expensive, suited to particular sample types or matrices and complex in both setting up and in the interpretation of results. Furthermore the general analytical chemist may have access and familiarity with only one or two methods. The purpose of this book is to familiarize analytical chemists with all the multi-element analysis techniques, to enable them to specify the most appropriate test for any given sample. This book should be of interest to professional analytical chemists, geochemists, biologists and environmental scientists.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
Molecular structure is the most basic information about a substance, determining most of its properties. Determination of accurate structures is hampered in that every method applies its own definition of "structure" and thus results from different sources can yield significantly different results. Sophisticated protocols exist to account for these differences, but until now, no textbook has been written to discuss such topics in a widely accessible manner. Balancing quantum theory with practical experiments, Equilibrium Molecular Structures focuses on the theory involved in determining and converting measured and computed data sets into accurate and well-defined equilibrium structures. This textbook begins with a discussion of quantum chemistry and the concept of potential energy surfaces, quantum chemical computation of structures and anharmonic force fields. The reader is next introduced to the method of least squares and the problem of ill-conditioning, leverage points, perturbation theory, computational aspects of determining semi-experimental equilibrium structures, the determination of moments of inertia from spectra, and the treatment of resonances. The textbook also examines the determination of diatomic molecular potentials using semiclassical and quantum mechanical methods as well as position and distance averages. From basic elements to the latest advances and current best practices, Equilibrium Molecular Structures contains abundant references, examples, and exercises. Additional examples are also available as downloadable support material on the publishers website. These features make the book ideal for class instruction but also user-friendly for self-instruction. It is recommended for newcomers to the field and also for experienced spectroscopists who want to expand their area of knowledge.
The third and last volume of this treatise IS concerned with important applications of the quantum~theory of chemical reactions to chemisorption, catalysis and biochemical reactions. The book begins with an important paper devoted to the theoretical background of heterogeneous catalysis. It is followed by two papers showing typical applications of wave mechanics to the analysis of chemisorption. Catalysed gas-solid reactions are chosen to illustrate gas, organic solid state reaction and some aspects of the mechanism of the FISCHER-TROPSCH synthesis are presented. The second part of the book is devoted to biochemical applications of quantum chemistry. Two papers are concerned with the quantum theory of enzyme activity. Two others present recent progress of quantum pharmacology. Finally an important contribution to the theory of intermolecular forces is made in the view of possible applications to biochemical problems. vii R. Daudel, A. Pullman, L. Salem, and A. Viellard reds.), Quantum Theory o/Chemical Reactions, Volume III, vii. Copyright (c) 1982 by D. Reidel Publishing Company. THEORETICAL BACKGROUND OF HETEROGENEOUS CATALYSIS J.E.Germain Laboratoire de Catalyse Appliquee et Cinetique Heterogene L. A. 231 du Centre National de la Recherche Scientifique Universite Claude Bernard Lyon I, E.S.C.I.L. 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex. Heterogeneous Catalysis is a surface Kinetic phenomenon by which a chemical reaction between molecules of a fluid phase is accelerated (activity) and oriented (selectivity) by contact with a solid phase (catalysts, without change of the solid. |
![]() ![]() You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Cross-Layer Resource Allocation in…
Ana I. Perez-Neira, Marc Realp Campalans
Hardcover
R2,048
Discovery Miles 20 480
|