![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.
In this thesis Colm Duffy reviews the chemistry and biology of stable lipoxin analogues. Colm has prepared for the first time ever a pyridine-containing LXA4 analogue in enantiomerically pure form. Biological evaluation determined that both epimers at the benzylic position suppress key cytokines known to be involved in inflammatory disease, with the (R)-epimer proving most efficacious. Moreover the author developed an excellent route to a related thiophene-containing analogue that also showed interesting biological activity. Both routes have inspired further work in the synthesis of further heteroaromatic analogues for biological evaluation. "
Photosensitization and photocatalysis refer to processes by which permanent chemical transformations are induced on substrates (organic/inorganic) by radiation to which the substrates themselves are transparent. Such transformations can be highly specific, very efficient, and occur under mild conditions. Herein lies the power of photochemical methods for possible applications in the field of conversion and storage of solar energy. This book provides a recent survey of the progress in this important area in catalysis, with an emphasis on inorganic complexes and organometallic compounds as the key light aborbers. The book is organized in three parts: fundamentals, followed by applications. Discussions cover a wide variety of photosensitized or photocatalyzed reactions: decomposition of water, reduction of CO2 and CO; spectral sensitization in photoelectrochemical cells; transformations (oxidation, reduction, isomerization, hydrogenation, dehydrogenation, carbonylation, etc.) of organics such as alkanes, alkenes, alcohols, etc. In view of the variety of systems (sensitizers, substrates) and the topics covered, the volume is unique in the field of photochemistry and will appeal to academic and industrial researchers in various subdisciplines of chemistry, material science and catalysis.
This book tackles the problematic relationship between Platonic philosophy and Romantic poetry, between the intellect and the emotions. Drawing on contemporary critical theory, especially hermeneutics and deconstruction, the author shows that a dialogue between thinking and poetizing is possible. The volume yields many new insights into both Platonic and Romantic texts and forms an important work for scholars and students of Greek philosophy, Romantic literature and critical theory.
"Astrochemistry and Astrobiology" is the debut volume in the new series "Physical Chemistry in Action." Aimed at both the novice and experienced researcher, this volume outlines the physico-chemical principles which underpin our attempts to understand astrochemistry and predict astrobiology. An introductory chapter includes fundamental aspects of physical chemistry required for understanding the field. Eight further chapters address specific topics, encompassing basic theory and models, up-to-date research and an outlook on future work. The last chapter examines each of the topics again but addressed from a different angle. Written and edited by international experts, this text is accessible for those entering the field of astrochemistry and astrobiology, while it still remains interesting for more experienced researchers.
A practical approach to chemical reaction kinetics from basic concepts to laboratory methods featuring numerous real-world examples and case studies This book focuses on fundamental aspects of reaction kinetics with an emphasis on mathematical methods for analyzing experimental data and interpreting results. It describes basic concepts of reaction kinetics, parameters for measuring the progress of chemical reactions, variables that affect reaction rates, and ideal reactor performance. Mathematical methods for determining reaction kinetic parameters are described in detail with the help of real-world examples and fully-worked step-by-step solutions. Both analytical and numerical solutions are exemplified. The book begins with an introduction to the basic concepts of stoichiometry, thermodynamics, and chemical kinetics. This is followed by chapters featuring in-depth discussions of reaction kinetics; methods for studying irreversible reactions with one, two and three components; reversible reactions; and complex reactions. In the concluding chapters the author addresses reaction mechanisms, enzymatic reactions, data reconciliation, parameters, and examples of industrial reaction kinetics. Throughout the book industrial case studies are presented with step-by-step solutions, and further problems are provided at the end of each chapter. * Takes a practical approach to chemical reaction kinetics basic concepts and methods * Features numerous illustrative case studies based on the author s extensive experience in the industry * Provides essential information for chemical and process engineers, catalysis researchers, and professionals involved in developing kinetic models * Functions as a student textbook on the basic principles of chemical kinetics for homogeneous catalysis * Describes mathematical methods to determine reaction kinetic parameters with the help of industrial case studies, examples, and step-by-step solutions Chemical Reaction Kinetics is a valuable working resource for academic researchers, scientists, engineers, and catalyst manufacturers interested in kinetic modeling, parameter estimation, catalyst evaluation, process development, reactor modeling, and process simulation. It is also an ideal textbook for undergraduate and graduate-level courses in chemical kinetics, homogeneous catalysis, chemical reaction engineering, and petrochemical engineering, biotechnology.
"Kinetics and Dynamics" on molecular modeling of dynamic processes opens with an introductory overview before discussing approaches to reactivity of small systems in the gas phase. Then it examines studies of systems of increasing complexity up to the dynamics of DNA. This title has interdisciplinary character presenting wherever possible an interplay between the theory and the experiment. It provides basic information as well as the details of theory and examples of its application to experimentalists and theoreticians interested in modeling of dynamic processes in chemical and biochemical systems. All contributing authors are renowned experts in their fields and topics covered in this volume represent the forefront of today s science."
David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.
Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world's foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).
Imposingly thick text derived from a one-semester course intended to acquaint advanced undergraduate (and beginning graduate) students with the concepts and methods of linear mathematics. Though physics is referred to in the title, the book is in almost every organizational and notational respect
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
This book explores the applications of ferroelectric materials in information technology by developing several prototype devices based on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals. It describes how an optothermal field-effect transistor (FET) was constructed on the PMN-26PT single crystal, using a MoS2 monolayer as the channel semiconductor material. This fusion of pyroelectric effect and the interface engineering of 2D materials provides an effective strategy for the 'photon revolution' of FET. An ultra-broadband photodetector (UV ~ THz) was monolithically integrated into a [111]-oriented PMN-28PT single crystal by using silver nanowires in the transparent top electrode. The photodetector showed a dramatic improvement in operation frequency up to 3 kHz: an order of magnitude higher than that of traditional pyroelectric photodetectors. A self-powered integrated module was demonstrated through the combination of a triboelectric nanogenerator and a ferroelectric FET. The stored information can easily be written in the memory system using mechanical energy, solving the power consumption problem with regard to information writing in ferroelectric nonvolatile memories. This book extends the applications of ferroelectric single crystals into areas other than piezoelectric devices, paving the way for exciting future developments.
Molecular ruthenium catalysts, during the last decade, have provided new indispensable synthetic methods that cannot be promoted by other catalysts, and they now constitute an emerging field for the selective preparation of fine chemicals. The major reaction types for carbon-carbon and carbon-heteroatom bond formation, most of them with atom economy, are comprehensively discussed by leading experts. The authors highlight the most important discoveries in ruthenium catalysis and propose activation processes, some of them being still controversial. They illustrate the innovation and usefulness in organic synthesis of specific reactions including carbocyclization, cyclopropanation, olefin metathesis, carbonylation, oxidation, transformation of silicon containing substrates, and show novel reactions operating via vinylidene intermediates, radical processes, inert bonds activation as well as catalysis in water. Therefore, the reader will receive a balanced view of this rapidly developing field.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
Elucidating Organic Reaction Mechanisms using photo-CIDNP Spectroscopy, by Martin Goez. Parahydrogen Induced Polarization by Homogeneous Catalysis: Theory and Applications, by Kerstin Munnemann et al. Improving NMR and MRI Sensitivity with Parahydrogen, by R. Mewis & Simon Duckett. The Solid-state Photo-CIDNP Effect, by Jorg Matysik et al. Parahydrogen-induced Polarization in Heterogeneous Catalytic Processes, by Igor Koptyug et al. Dynamic Nuclear Polarization Enhanced NMR Spectroscopy, by U. Akbey & H. Oschkinat. Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins, by Lars T. Kuhn."
* Physical chemists will find this book comprehensive. Topical
reviews on all aspects of colloidal ordering and related phase
transitions will be covered. It provides a good blend of
experimental and theoretical investigations.
Focusing on the state of the art of electrode process chemistry, the contributors discuss a wide range of applications and provide coverage of advances in quantum mechanical theory of electron transfer and the mechanism of electrical passage through nerves and batteries for motor vehicles. Annotatio
A thorough exploration of the atomic structures and properties of the essential engineering interfaces—an invaluable resource for students, teachers, and professionals The most up-to-date, accessible guide to solid-vapor, solid-liquid, and solid-solid phase transformations, this innovative book contains the only unified treatment of these three central engineering interfaces. Employing a simple nearest-neighbor broken-bond model, Interfaces in Materials focuses on metal alloys in a straightforward approach that can be easily extended to all types of interfaces and materials. Enhanced with nearly 300 illustrations, along with extensive references and suggestions for further reading, this book provides:
Spanning the fields of chemical, electrical and computer engineering, materials science, solid-state physics, and microscopy, Interfaces in Materials bridges a major gap in the literature of surface and interface science.
Extracellular MRI and X-ray contrast agents are characterized by their phar- cokinetic behaviour.After intravascular injection their plasma-level time curve is characeterized by two phases. The agents are rapidly distributed between plasma and interstitial spaces followed by renal elimination with a terminal half-live of approximatly 1-2 hours. They are excreted via the kidneys in unchanged form by glomerular filtration. Extracellular water-soluble contrast agents to be applied for X-ray imaging were introduced into clinical practice in 1923. Since that time they have proved to be most valuable tools in diagnostics.They contain iodine as the element of choice with a sufficiently high atomic weight difference to organic tissue. As positive contrast agents their attenuation of radiation is higher compared with the attenuation of the surrounding tissue. By this contrast enhancement X-ray diagnostics could be improved dramatically. In 2,4,6-triiodobenzoic acid derivatives iodine is firmly bound. Nowadays diamides of the 2,4,6-triiodo-5-acylamino-isophthalic acid like iopromide (Ultravist, Fig. 1) are used as non-ionic (neutral) X-ray contrast agents in most cases [1].
In light of recent alarming environmental trends combined with increasing commercial viability of fuel cells, the time is propitious for a book focusing on the systematic aspects of cell plant technology. This multidisciplinary text covers the main types of fuel cells, R&D issues, plant design and construction, and economic factors to provide industrial and academic researchers working in electrical systems design, electrochemistry, and engineering with a unique and comprehensive resource.
This book provides a comprehensive description of the catalytic technologies for selective hydrogenation of benzene to cyclohexene. Focusing on selective hydrogenation of benzene to prepare cyclohexene and its downstream products, such as cyclohexanone, bulk chemicals and high-value fine chemicals, it also discusses the objective laws, reaction mechanisms and scientific significance based on experimental data, analysis and characterization results. Given its scope, the book will appeal to a broad readership, particularly professionals at universities and scientific research institutes, senior undergraduates, master's and doctoral graduate students as well as practitioners in industry.
Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of Green Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Backvall: Shvo s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis."
|
![]() ![]() You may like...
Quantum Optics, Experimental Gravity…
Pierre Meystre, Marian O. Scully
Hardcover
R6,489
Discovery Miles 64 890
|