![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This book is intended for postgraduate students, researchers and engineers engaged in research into oxide conductors. It presents an overview of electronic transport phenomena, including a discussion of high-Tc superconductivity and colossal magnetoresistance in two chapters, one of which reviews all the conducting oxides. In another nine chapters representative oxides are discussed in detail. Since electron-electron and electron-phonon interactions greatly influence conducting properties, two chapters are devoted to their explanation. More than 1200 references will serve as a useful guide to those entering into this vast field of research.
The main emphasis in this book is on the photoprocesses of transition metal complexes and biosystems, but not to the exclusion of other photoprocesses. The book will thus be useful to a wide range of researchers. Beginning with a basic introduction to photophysics, quantum chemistry, and the spectroscopic techniques used for the study of organometallic intermediates and biliproteins, the book goes on to discuss the photochemistry of organometallics, special attention being paid to the photochemistry of metalbonded carbonyls and polynuclear systems in supramolecular photochemistry. After moving to a discussion of large systems, the book then developes some aspects of the photophysics of biosystems, before closing with a discussion of artificial photosynthetic model systems.
This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.
This book systematizes data on the heterophase states and their evolution in perovskite-type ferroelectric solid solutions. It also provides a general interpretation of heterophase and domain structures on changing temperature, composition or electric field, as well as the complete analysis of interconnections domain structures, unit-cell parameters changes, heterophase structures and stress relief. The description of numerous examples of heterophase states in lead-free ferroelectric solid solutions is also included. Domain state-interface diagrams contribute to the interpretation of heterophase states in perovskite-type ferroelectric solid solutions and describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases, the effect of external electric field etc. This 2nd edition generalizes the results on the heterophase ferroelectric solid solutions and the stress relief and presents new results on heterophase/domain structures and phase contents in lead-free ferroelectric solid solutions.
This textbook offers an introduction to multiple, interdependent transport phenomena as they occur in various fields of physics and technology like transport of momentum, heat, and matter. These phenomena are found in a number of combined processes in the fields of chemical, food, biomedical, and environmental sciences. The book puts a special emphasis on numerical modeling of both purely diffusive mechanisms and macroscopic transport such as fluid dynamics, heat and mass convection. To favor the applicability of the various concepts, they are presented with a simplicity of exposure, and synthesis has been preferred with respect to completeness. The book includes more than 130 graphs and figures, to facilitate the understanding of the various topics. It also presents many modeling examples throughout the text, to control that the learned material is properly understood. There are some typos in the text. You can see the corrections here:Â http://www.springer.com/cda/content/document/cda_downloaddocument/ErrataCorrige_v0.pdf?SGWID=0-0-45-1679320-p181107156
Light alkanes tend to be resistant to many forms of activation. The horizontal approach of the present book covers homogeneous, heterogeneous and biological catalysis, thus allowing readers to gain an awareness of progress and ideas in research areas different from their own. The book contains both general chapters, giving an overview of the subject, and specialised contributions that deal with the details and state of the art. A specialist report is also included which gives a critical insight into current progress and discusses future prospects and major challenges. Audience: Newcomers and senior researchers in the field of alkane activation. The mixed theoretical and practical approach will be of interest to researchers and industrialists alike.
The field of organometallic chemistry has emerged over the last twenty-five years or so to become one of the most important areas of chemistry, and there are no signs of abatement in the intense current interest in the subject, particularly in terms of its proven and potential application in catalytic reactions involving hydrocarbons. The development of the organometallic/ catalysis area has resulted in no small way from many contributions from researchers investigating palladium systems. Even to the well-initiated, there seems a bewildering and diverse variety of organic reactions that are promoted by palladium(II) salts and complexes. Such homogeneous reactions include oxidative and nonoxidative coupling of substrates such as olefins, dienes, acetylenes, and aromatics; and various isomerization, disproportionation, hydrogenation, dehydrogenation, car bonylation and decarbonylation reactions, as well as reactions involving formation of bonds between carbon and halogen, nitrogen, sulfur, and silicon. The books by Peter M. Maitlis - The Organic Chemistry of Palladium, Volumes I, II, Academic Press, 1971 - serve to classify and identify the wide variety of reactions, and access to the vast literature is available through these volumes and more recent reviews, including those of J. Tsuji [Accounts Chem. Res. , 6, 8 (1973); Adv. in Organometal. , 17, 141 (1979)], R. F. Heck [Adv. in Catat. , 26, 323 (1977)], and ones by Henry [Accounts Chem. Res. , 6, 16 (1973); Adv. in Organometal. , 13, 363 (1975)]. F. R. Hartley's book - The Chemistry of Platinum and Palladium, App!. Sci. Pub!.
In his thesis, Matthias Junk takes an innovative approach to assess the local structure and dynamics of biological and synthetic amphiphilic macromolecules capable of transporting small molecules. Replacing the latter with stable radicals, he uses state-of-the-art electron paramagnetic resonance (EPR) spectroscopy to describe the highly relevant transport function from the viewpoint of the guest molecules. Such, he demonstrates that the functional structure of human serum albumin in solution significantly differs from its crystal structure - a consequence of the protein's adaptability to host various endogenous compounds and drug molecules. Further, he shows that the thermal collapse of thermoresponsive hydrogels and dendronized polymers leads to static and dynamic heterogeneities on the nanoscale. These heterogeneities bear consequences for the material's hosting properties and enable unforeseen complex catalytic functionalities.
Johannes G. de Vries: Pd-catalyzed coupling reactions.- Gregory T. Whiteker and Christopher J. Cobley: Applications of Rhodium-Catalyzed Hydroformylation in the Pharmaceutical, Agrochemical and Fragrance Industries.- Philippe Dupau: Ruthenium-catalyzed Selective Hydrogenation for Flavor and Fragrance Applications.- Hans-Ulrich Blaser, Benoit Pugin and Felix Spindler: Asymmetric Hydrogenation.- Ioannis Houpis: Case Study: Sequential Pd-catalyzed Cross-Coupling Reactions; Challenges on Scale-up.- Adriano F. Indolese: Pilot Plant Scale Synthesis of an Aryl-Indole - Scale up of a Suzuki Coupling.- Per Ryberg: Development of a Mild and Robust Method for Palladium Catalysed Cyanation on Large Scale.- Cheng-yi Chen: Application of Ring Closing Metathesis Strategy to the Synthesis of Vaniprevir (MK-7009), a 20-Membered Macrocyclic HCV Protease Inhibitor.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The development and computational implementation of analytical expres sions for the low-order derivatives of electronic energy surfaces and other molecular properties has undergone rapid growth in recent years. It is now fairly routine for chemists to make use of energy gradient information in locating and identifying stable geometries and transition states. The use of second analytical derivative (Hessian or curvature) expressions is not yet routine, and third and higher energy derivatives as well as property (e.g., dipole moment, polarizability) derivatives are just beginning to be applied to chemical problems. This NATO Advanced Research Workshop focused on analyzing the re lative merits of various strategies for deriving the requisite analyti cal expressions, for computing necessary integral derivatives and wave function parameter derivatives, and for efficiently coding these expres sions on conventional scalar machines and vector-oriented computers. The participant list contained many scientists who have been instrumen tal in bringing this field to fruition as well as eminent scientists who have broad knowledge and experience in quantum chemistry in general."
Proceedings of the NATO Advanced Study Institute, Cargese, Corsica, France, 18-31 July, 1988"
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
Science advances by leaps and bounds rather than linearly in time. I t is not uncommon for a new concept or approach to generate a lot of initial interest, only to enter a quiet period of years or decades and then suddenly reemerge as the focus of new exciting investigations. This is certainly the case of the reduced density matrices (a k a N-matrices or RDMs), whose promise of a great simplification of quantum-chemical approaches faded away when the prospects of formulating the auxil iary yet essential N-representability conditions turned quite bleak. How ever, even during the period that followed this initial disappointment, the 2-matrices and their one-particle counterparts have been ubiquitous in the formalisms of modern electronic structure theory, entering the correlated-level expressions for the first-order response properties, giv ing rise to natural spinorbitals employed in the configuration interaction method and in rigorous analysis of electronic wavefunctions, and al lowing direct calculations of ionization potentials through the extended Koopmans'theorem. The recent research of Nakatsuji, Valdemoro, and Mazziotti her alds a renaissance of the concept of RDlvls that promotes them from the role of interpretive tools and auxiliary quantities to that of central variables of new electron correlation formalisms. Thanks to the economy of information offered by RDMs, these formalisms surpass the conven tional approaches in conciseness and elegance of formulation. As such, they hold the promise of opening an entirely new chapter of quantum chemistry."
Engel and Reid's Quantum Chemistry and Spectroscopy gives students a contemporary and accurate overview of physical chemistry while focusing on basic principles that unite the sub-disciplines of the field. The Third Edition continues to emphasize fundamental concepts and presents cutting-edge research developments that demonstrate the vibrancy of physical chemistry today. MasteringChemistry(r) for Physical Chemistry - a comprehensive online homework and tutorial system specific to Physical Chemistry - is available for the first time with Engel and Reid to reinforce students' understanding of complex theory and to build problem-solving skills throughout the course.
This volume is the first of a set of two which contain the invited lectures given at the international seminar of the same title held at the Centre de Mecanique Ondulatoire Appliquee du Centre National de la Recherche Scientifique in Paris (France) from October 1983 to May 1985. They are intended to provide a survey of topics of current interest relative to the structure and the dynamics of molecular systems. The papers have been selected on the basis of their relevance to the following four topics: i) molecular conformations and transformations; ii) molecular relaxation and motion; iii) charge, spin and momentum distributions in molecular solids; iv) collective phenomena in condensed matter. The first volume deals f)1ostly with the first two topics, the second volume mostly with the last two. Each volume consists of about fifteen self contained, reference contributions covering recent achievements in active branches of molecular physics and physical chemistry. The first four papers of the present volume deal with theoretical aspects of structure and reactivity problems, with particular attention being paid to topology considerations, which have joined symmetry con siderations as an important tool in approaching chemistry problems. The treatment of nuclear probability density distributions is performed on a model basis for a simple system, even though it has come to the attention of theoreticians through experimental results for complex systems."
Iron catalysts in organic synthesis are strongly in demand because iron is non-toxic, inexpensive and the most abundant transition metal in the earth, although their use is still limited compared with that of rare, precious metals such as palladium, ruthenium and rhodium. This thesis describes the first practical example of iron catalysis in the carbon hydrogen bond activation reaction to synthesized fused aromatic ring compounds. By using a unique combination of iron catalyst and dichloride oxidant, various kind of naphthalene and phenanthrene derivatives were synthesized via annulation reaction with alkynes including direct C H bond activation process. This achievement opens the new possibility of low-valent iron catalysis and expands synthetic methods for a sustainable society."
This thesis presents detailed mechanistic studies on a series of important C-H activation reactions using combined computational methods and mass spectrometry experiments. It also provides guidance on the design and improvement of catalysts and ligands. The reactions investigated include: (i) a nitrile-containing template-assisted meta-selective C-H activation, (ii) Pd/mono-N-protected amino acid (MPAA) catalyzed meta-selective C-H activation, (iii) Pd/MPAA catalyzed asymmetric C-H activation reactions, and (iv) Cu-catalyzed sp3 C-H cross-dehydrogenative-coupling reaction. The book reports on a novel dimeric Pd-M (M = Pd or Ag) model for reaction (i), which successfully explains the meta-selectivity observed experimentally. For reaction (ii), with a combined DFT/MS method, the author successfully reveals the roles of MPAA ligands and a new C-H activation mechanism, which accounts for the improved reactivity and high meta-selectivity and opens new avenues for ligand design. She subsequently applies ion-mobility mass spectrometry to capture and separate the [Pd(MPAA)(substrate)] complex at different stages for the first time, providing support for the internal-base model for reaction (iii). Employing DFT studies, she then establishes a chirality relay model that can be widely applied to MPAA-assisted asymmetric C-H activation reactions. Lastly, for reaction (iv) the author conducts detailed computational studies on several plausible pathways for Cu/O2 and Cu/TBHP systems and finds a reliable method for calculating the single electron transfer (SET) process on the basis of benchmark studies.
During the last decades a considerable effort has been made on the computation of the isothermal flow of viscoelastic fluids. In fact the activities related to this particular field of non-Newtonian fluid mechanics have focused on the following questions: which type of constitutive equation describes non-Newtonian fluid behaviour; how to measure fluid parameters; and what type of computational scheme leads to reliable, stable and cost-effective computer programs. During the same period, typical non-Newtonian fluid phenomena have been experimentally examined, such as the flow through a four-to-one' contraction, the flow around a sphere or separation flow, providing fresh challenges for numerical modellers. Apart from momentum transport, however, fluid flow is strongly influenced by heat treansport in most real industrial operations in which non-Newtonian fluids are processed. The IUTAM Symposium on Numerical Simulation of Nonisothermal Flow of Viscoelastic Liquids' held at Rolduc Abbey in Kerkrade, the Netherlands, November 1--3, 1993, was organised to monitor the state of affairs in regard to the influence of nonisothermal effects on the flow of a viscoelastic liquid. The present collection of papers gives an overview of what has been achieved so far. It is a milestone in the rapidly emerging and exciting new field in non-Newtonian fluid mechanics.
Over the last decade, high performance Capillary electrophoresis (HPCE) has emerged as a powerful and versatile separation technique that promises to rival high performance liquid chromatography when applied to the separation of both charged and neutral species. The high speed and high separation efficiency which can be attained using any of the various modes of HPCE has resulted in the increased use of the technique in a range of analytical environments. The procedures are, however, still in the early stages of development and several barriers remain to their adoption as the technique of choice for a range of analytical problems. One such barrier is the selection and optimization of the conditions required to achieve reproducible separations of analytes and it is in this area that this new book seeks to give assistance. The book is written by an international team of authors, drawn from both academic and industrial users, and the manufacturers of instruments. At its heart are a number of tables, divided into specific application areas. These give details of published separations of a wide range of archetypal analytes, the successful separation conditions and the matrix in which they were presented. These tables are based on separations reported since 1992 and are fully referenced to the original literature. The tables are supported by discussions of the problems that a particular area presents and the strategies and solutions adopted to overcome them. The general areas covered are biochemistry, pharmaceutical science, bioscience, ion analysis, food analysis and environmental science.
How did life begin on the Earth? The units of life are cells, which can be defined as bounded systems of molecules that capture energy and nutrients from the environment -- systems that expand, reproduce, and evolve over time, often into more complex systems. This book is the proceedings of a unique meeting, sponsored by NATO and held in Maratea, Italy, that brought together for the first time an international group of investigators who share an interest in how molecules self-assemble into supramolecular structures, and how those structures may have contributed to the origin of life. The book is written at a moderately technical level, appropriate for use by researchers and by students in upper-level undergraduate and graduate courses in biochemistry and molecular biology. The overall interest of its subject matter provides an excellent introduction for students who wish to understand how the foundational knowledge of chemistry and physics can be applied to one of the most fundamental questions now facing the scientific community. The editors are pioneers in defining what we mean by the living state, particularly the manner in which simple molecular systems can assume complex associations and functions, including the ability to reproduce. Each chapter of the book presents an up-to-date report of highly significant research. Two of the authors received medals from the National Academy of Science USA in 1994, and other research reported in the book has been featured in internationally recognized journals such Scientific American, Time, and Discover.
Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called "plastic chips" ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance. |
![]() ![]() You may like...
Polish River Basins and Lakes - Part II…
Ewa Korzeniewska, Monika Harnisz
Hardcover
R5,946
Discovery Miles 59 460
Ratels Aan Die Lomba - Die Storie Van…
Leopold Scholtz
Paperback
![]()
Loose Leaf for Data Communications and…
Behrouz A. Forouzan
Loose-leaf
|