Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry
Computational Modelling of Homogeneous Catalysis is an extensive collection of recent results on a wide array of catalytic processes. The chapters are, in most cases, authored by the researchers who have performed the calculations. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest, including: -olefin polymerization; This book facilitates understanding by experimental chemists in the field on what has already been accomplished and what can be expected from calculations in the near future. In addition, the book provides computational chemists with a first-hand knowledge on the state of the art in this exciting field.
The work presented in this thesis involves a number of sophisticated experiments highlighting novel applications of the Pixel Imaging Mass Spectrometry (PImMS) camera in the field of photoinduced molecular dynamics. This approach represents the union of a new enabling technology (a multiple memory register, CMOS-based pixel detector) with several modern chemical physics approaches and represents a significant leap forward in capabilities. Applications demonstrated include three-dimensional imaging of photofragment Newton spheres, simultaneous electron-ion detection using a single sensor, and ion-ion velocity correlation measurements that open the door to novel covariance imaging experiments. When combined with Coulomb explosion imaging, such an approach is demonstrated to allow the measurement of molecular structure and motion on a femtosecond timescale. This is illustrated through the controlled photoexcitation of torsional motion in biphenyl molecules and the subsequent real-time measurement of the torsional angle.
The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago."
Proteins are the functional units of the cellular machinery and they provide significant information regarding the molecular basis of health and disease. Therefore, techniques to separate and isolate the various proteins are critical to studying and understanding their functional characteristics. One of the widely used techniques for this purpose is electrophoresis. In Protein Electrophoresis: Methods and Protocols, contributions from experts in the field have been collected in order to provide practical guidelines to this complex study. Each chapter outlines a specific electrophoretic variant in detail so that laboratory scientists may perform a technique new to their lab without difficulty. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Electrophoresis: Methods and Protocols seeks to serve laboratory scientists with well-honed, detailed methodologies in an effort to further our knowledge of this essential field.
This book is devoted to a general discussion about localization and delocalization in quantum chemistry. The first volume is concerned with molecules in their ground state. It is made of papers presented during the academic year 73-74 at an international seminar organized by some members of the 'Centre de Mecanique Ondulatoire Appli- quee du C.N.R.S.' and some members of the 'Laboratoire de Chimie Quantique de l'Institut de Biologie Physico-Chimique'. It contains also reports of discussions which followed the presentation of invited papers. It is a 'forum' in which each expert gives his opinion on a work in progress. The volume is divided into four parts. The first one is a statistical analysis of the localizability of molecular electrons in the three-dimensional space. It contains an exposition of the basic ideas of the loge theory which provides a framework to do such an analysis. The second part is concerned with the separability of a molecular wave function and its expression in terms of localized elements. An exploration is made of the rela- tionship between the localizability of electrons and the possibility of expressing the wave function in terms of localized orbitals. The third part is devoted to the partition of the energy in local contributions.
This book introduces readers to the preparation of two-dimensional metal sulfide/oxide for CO2 photoreduction. Based on two-dimensional metal sulfide/oxide materials, this book establishes the structure-to-property relationships of photocatalyst for CO2 photoreduction, and reveals the intrinsic mechanism of the CO2 photoreduction by virtue of the in situ characterization techniques and the density functional theory calculations. It is anticipated that this book will help to identify empirical guidelines for designing and fabricating high-performance catalysts of solar-driven CO2 reduction.
The value of the critical temperature (Tc), below which the thermal explosion of a chemical cannot occur, is indispensable to prevent such a chemical from exploding. In order to determine the Tc it has so far been necessary to measure the value in explosion experiments. Because of the inherent hazards, only few Tc values are available at present.
This thesis focuses on the electrochemical synthesis of multi-segmented nanowires. In contrast to previous work, which was largely limited to one-dimensional modifications, Tuncay Ozel presents a technique, termed coaxial Lithography (COAL), which allows for the synthesis of coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both the axial and radial dimensions. This work has significantly expanded current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures. These developments have enabled fundamental and applied studies which were not previously possible. The COAL technique will increase the capabilities of many researchers who are interested in studying light-matter interactions, nanoparticle assembly, solution-dispersible nanoparticles and labels, semiconductor device physics and nanowire biomimetic probe preparation. The methodology and results presented in this thesis appeal to researchers in nanomaterial synthesis, plasmonics, biology, photovoltaics, and photocatalysis.
Structures, Bonding and Hydrogen Bonds, by Kun Dong, Qian Wang, Xingmei Lu, Suojiang Zhang Aggregation in System of Ionic Liquids, by Jianji Wang, Huiyong Wang Dissolution of Biomass Using Ionic Liquids, by Hui Wang, Gabriela Gurau, Robin D. Rogers Effect of the Structures of Ionic Liquids on Their Physical-Chemical Properties, by Yu-Feng Hu, Xiao-Ming Peng Microstructure study of Ionic liquids by spectroscopy, by Haoran Li Structures and Thermodynamic Properties of Ionic Liquids, by Tiancheng Mu, Buxing Han
The theme of 'escape from metastable states', either via noise-assisted hop- ping and/or quantum tunneling, is pivotal to many scientific disciplines. It impacts on suchdiversephysical,chemicalandbiologicalprocessesasdiffu- sion in solids, chemical reactions per se, nucleation phenomenaand transfer ofmatter and information in biologicalcomplexes, to name only a few. With 'New Trends in Kramers' Reaction Rate Theory' this book fills yet another part of the multifaceted scope which underpins the Understanding of Chemical Reactivity. Since the publication of the comprehensive review about reaction rate theory in Rev. Mod. Phys. 52, 251 (1990) the field has witnessed many majordevelopments and extensions both in experiment and theory. In this book the focus will be on the theoretical progress. In doing so, the editorscollected aseries ofauthoritative articles from majorpractitioners in the field which as a whole give a representative- although notcomplete- sample ofthe novel recenttheoretical advances. As an inevitable consequence, the editors recognize that not all readers will wish to digest the volume in its entirety. We trust, however, that the reader will be able to choose from the many methods and techniques which he is interested in, and which he requires to perform his own new research in this area. There is the consistent underlying theme of noise-assisted barrier crossing that is running through all of the book. Nevertheless, each chapter should be considered as self contained. In this spirit the editors share the confident beliefthat the future research on the Kramers problem, and related topics, will be invigorated by the selectedcontributions herein.
This book represents a collection of lectures presented at the NATO Advanced study Institute(ASI) on "Chemistry & Physics of the Molecular Processes in Energetic Materials," held at Hotel Torre Normanna, Altavilla Milicia, Sicily, Italy, September 3 to 15, 1989. The institute was attended by seventy participants including twenty lecturers, drawn from thirteen countries. The purpose of the institute was to review the major ad vances made in recent years in the theoretical and experi mental aspects of explosives and propellants. In accordance with the format of the NATO ASI, it was arranged to have a relatively small number of speakers to present in depth, re view type lectures emphasizing the basic research aspects of the subject, over a two week period. Most of the speakers gave two lectures, each in excess of one hour with addition al time for discussions. The scope of the meeting was limit ed to molecular and spectroscopic studies since the hydro dynamic aspects of detonation and various performance crite ria of energetic materials are often covered adequately in other international meetings. An attempt was made to have a coherent presentation of various theoretical, computational and spectroscopic approaches to help a better understanding of energetic materials from a molecular point of view. The progress already made in these areas is such that structure property (e. g."
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field. All chapters from Topics in Heterocyclic Chemistry are published Online First with an individual DOI. In references, Topics in Heterocyclic Chemistry is abbreviated as Top Heterocycl Chem and cited as a journal
The thesis by Merce Pacios exploits properties of carbon nanotubes to design novel nanodevices. The prominent electrochemical properties of carbon nanotubes are used to design diverse electrode configurations. In combination with the chemical properties and (bio)functionalization versatility, these materials prove to be very appropriate for the development of electrochemical biosensors. Furthermore, this work also evaluates the semiconductor character of carbon nanotubes (CNT) for sensor technology by using a field effect transistor configuration (FET). The CNT-FET device has been optimized for operating in liquid environments. These electrochemical and electronic CNT devices are highly promising for biomolecule sensing and for the monitoring of biological processes, which can in the future lead to applications for rapid and simple diagnostics in fields such as biotechnology, clinical and environmental research.
This volume provides the latest developments in the field of surface science and technology based on diazonium coupling agents as well as their precursors (e.g. aromatic amines). It presents new concepts of surface chemistry of diazonium salts and discusses their novel and challenging applications. The latest advances on surface modification with diazonium salts are discussed and various promising alternative surface modifiers such as iodonium salts are examined. This book demonstrates the universality of diazonium salts in the surface treatment of classical and emergent materials and it will be a great tool for researcher and graduates working in this field.
This volume documents the scientific events of the NATO Advanced Research Workshop (ARW) on The Preparation of Nanoparticles in Solutions and in Solids. The ARW was held in the second largest city in Hungary, Szeged, truthfully referred to as "the city of sunshine," from March 8 to March 13, 1996. The seventy-seven participants, including seventeen students, came from twentyone different countries. Housing all participants together and arranging a number of social activities fostered lively discussions both inside and outside of formal sessions. Twenty-one key lectures were presented in five sessions. Each session was followed by a fortyfive minutes of general discussion. One evening was devoted to the presentation of fifty-five posters. Thirty-two contribution were submitted and accepted for publication in the present volume. The volume also contains the minutes of the discussions, and a summary of the conclusions of the working groups. The ARW was organized under the auspices and financial support of NATO, City of Szeged, European Research Office of the US Army, Hungarian Academy of Sciences, Hungarian National Committee for Technological Development (OMBF), International Association of Colloid and Interface Scientists IACIS, and National Science Foundation (NSF). Both the organizers and participants gratefully acknowledge the generous support of the agencies. The Editors also thank the high quality and creative contributions of the participants. It is they who made this volume a reality. Janos H. fendler Irnre Dekany ix Glossary of Some Names and Acronyms Advanced Materials Man-made materials having superior mechanical, thennal, electrical, optical, and other desirable properties.
Covers all aspects of gold nanorods along with selected protocols Focuses on synthetic chemistry, optical property, and fictionalization approach of colloidal gold nanorods Describes standard synthetic methods and advantage of gold nanorods in biomedical applications Includes authentic and reproducible experimental procedures Discusses applications like redox catalyst, catalyst promoter, delivery carrier, solar cell material, and so forth
This textbook concerns thermal properties of bulk matter and is aimed at advanced undergraduate or first-year graduate students in a range of programs in science or engineering. It provides an intermediate level presentation of statistical thermodynamics for students in the physical sciences (chemistry, nanosciences, physics) or related areas of applied science/engineering (chemical engineering, materials science, nanotechnology engineering), as they are areas in which statistical mechanical concepts play important roles. The book enables students to utilize microscopic concepts to achieve a better understanding of macroscopic phenomena and to be able to apply these concepts to the types of sub-macroscopic systems encountered in areas of nanoscience and nanotechnology.
This book presents a comprehensive overview of the freezing of colloidal suspensions and explores cutting-edge research in the field. It is the first book to deal with this phenomenon from a multidisciplinary perspective, and examines the various occurrences, their technological uses, the fundamental phenomena, and the different modeling approaches. Its chapters integrate input from fields as diverse as materials science, physics, biology, mathematics, geophysics, and food science, and therefore provide an excellent point of departure for anyone interested in the topic. The main content is supplemented by a wealth of figures and illustrations to elucidate the concepts presented, and includes a final chapter providing advice for those starting out in the field. As such, the book provides an invaluable resource for materials scientists, physicists, biologists, and mathematicians, and will also benefit food engineers, civil engineers, and materials processing professionals.
This book is an excellent introduction to density functional theory
for electrons. Largely written in review style, it will also serve
as an excellent overview of recent developments.
This book describes the forcefields/interatomic potentials that are used in the atomistic-scale and molecular dynamics simulations. It covers mechanisms, salient features, formulations, important aspects and case studies of various forcefields utilized for characterizing various materials (such as nuclear materials and nanomaterials) and applications. This book gives many help to students and researchers who are studying the forcefield potentials and introduces various applications of atomistic-scale simulations to professors who are researching molecular dynamics.
The development of "high-tech" materials in contemporary industries is deeply related to a detailed understanding of specific surface properties of catalysts which make particular reactions possible. But this understanding presupposes that there exists a body of theory capable of explaining situations not easily accessible to experimental methods and of relating experimental findings among themselves and with theoretical constructs. For these reasons, theoretical developments in surface physics and surface chemistry of transition metal compounds have been of paramount importance in promoting progress in catalysis, electronic devices, corrosion, etc. Although a great variety of spectroscopic methods for analyzing solids and surfaces at molecular scale have been introduced in recent years, nevertheless, many questions about the adsorption sites and intermediates, the effect of promoters, the poisoning of active sites, the nature of segregation of impurities, the process of surface reconstruction, the mechanisms of reactions, etc. have remained unanswered simply because of the great complexity of surface phenomena. It is in this sense that quantum mechanical method- combined with experimental data - may shed some light on the microscopic properties of new surface materials.
This book explores recent progress in RNA secondary, tertiary structure prediction, and its application from an expansive point of view. Because of advancements in experimental protocols and devices, the integration of new types of data as well as new analysis techniques is necessary, and this volume discusses additional topics that are closely related to RNA structure prediction, such as the detection of structure-disrupting mutations, high-throughput structure analysis, and 3D structure design. Written for the highly successful Methods in Molecular Biology series, chapters feature the kind of detailed implementation advice that leads to quality research results. Authoritative and practical, RNA Structure Prediction serves as a valuable guide for both experimental and computational RNA researchers.
This book presents the "helical wormlike chain" model - a general model for both flexible and semiflexible polymer chains. It explains how statistical-mechanical, hydrodynamic, and dynamic theories of their solution properties can be developed on the basis of this model. This new second edition has been carefully updated and thoroughly revised. It includes a new chapter covering "Simulation and More on Excluded-Volume Effects", as well as the discussion of new experimental data and the application of the theory to ring polymers. The authors provide analysis of important recent experimental data by the use of their theories for flexible polymers over a wide range of molecular weights, including the oligomer region, and for semiflexible polymers, including biological macromolecules such as DNA. This is all clearly illustrated using a reasonable number of theoretical equations, tables, figures, and computer-aided forms, which support the understanding of the basic theory and help to facilitate its application to experimental data for the polymer molecular characterization.
Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization. Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impact of electrochemical technology on packaging. The second part discusses chip metallization topics including the development of robust barrier layers and alternative metallization materials. Part III explores key aspects of chip-package interconnect technologies, followed by Part IV's analysis of packages, boards, and connectors which covers materials development, technology trends in ceramic packages and multi-chip modules, and electroplated contact materials. Illustrating the importance of processing tools in enabling technology development, the book concludes with chapters on chemical mechanical planarization, electroplating, and wet etching/cleaning tools. Experts from industry, universities, and national laboratories submitted reviews on each of these subjects, capturing the technological advances made in each area. A detailed examination of how packaging responds to the challenges of Moore's law, this book serves as a timely and valuable reference for microelectronic packaging and processing professionals and other industrial technologists.
Much of Duhem's work as a professional scientist was closely related to the newly emerging discipline of physical chemistry. The book and associated papers translated here revolve around his concomitant philosophical and historical interests in chemistry-topics largely uncovered by Duhem's writings hitherto available in English. He understood contemporary concerns of chemists to be a development of the ancient dispute over the nature of mixture. Having developed his historical account from distinctions drawn from the atomists and Aristotelians of antiquity, he places his own views of chemical combination squarely within the Aristotelian tradition. Apart from illuminating Duhem's own work, it is of interest to see how the ancient dispute can be related to modern science by someone competent to make such comparisons. The book is lucid and logically stringent without assuming any particular mathematical prerequisites, and provides a masterly statement of an important line of nineteenth century thought which is of interest in its own right as well as providing insight into Duhem's broader philosophical views. Audience: This volume is of interest to Duhem scholars, philosophers of science and chemists with an interest in philosophy. |
You may like...
The Real Change-Makers - Why Government…
David Warfield Brown
Hardcover
R1,607
Discovery Miles 16 070
Legal Path Dependence and the Long Arm…
Victor Asal, Udi Sommer
Hardcover
R2,112
Discovery Miles 21 120
Global Politics and Its Violent Care for…
Marjo Lindroth, Heidi Sinevaara-Niskanen
Hardcover
R3,028
Discovery Miles 30 280
Land, Rights and the Politics of…
Lars Buur, Jose J. Macuane, …
Hardcover
R2,612
Discovery Miles 26 120
|