![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This volume represents the proceedings of an international symposium on sample preparation, held at the University of Surrey, and jointly organised by the Chromatographic Society and the Robens Institute. The Chromatographic Society is the only international organisation devoted to the promotion of, and the exchange of information on, all aspects of chromatography and related techniques. With the introduction of gas chromatography in 1952, the Hydrocarbon Chemistry Panel of the Hydrocarbon Research Group of the Institute of Petroleum, recognising the potential of this new technique, set up a Committee under Dr S.F. Birch to organise a symposium on "Vapor Phase Chromatography" which was held in London in June 1956. Almost 400 delegates attended this meeting and success exceeded all expectation. It was to afford discussion of immediately apparent that there was a need for an organised forum development and application of the method and, by the end of the year, the Gas Chromatog raphy Discussion Group had been formed under the Chairmanship of Dr A.T. James with D.H. Desty as Secretary. Membership of this Group was originally by invitation only, but in deference to popular demand, the Group was opened to all willing to pay the modest sub scription of one guinea and in 1957 A.J.P. Martin, Nobel Laureate, was elected inaugural Chairman of the newly-expanded Discussion Group."
Applied Photochemistry encompasses the major applications of the chemical effects resulting from light absorption by atoms and molecules in chemistry, physics, medicine and engineering, and contains contributions from specialists in these key areas. Particular emphasis is placed both on how photochemistry contributes to these disciplines and on what the current developments are. The book starts with a general description of the interaction between light and matter, which provides the general background to photochemistry for non-specialists. The following chapters develop the general synthetic and mechanistic aspects of photochemistry as applied to both organic and inorganic materials, together with types of materials which are useful as light absorbers, emitters, sensitisers, etc. for a wide variety of applications. A detailed discussion is presented on the photochemical processes occurring in the Earth's atmosphere, including discussion of important current aspects such as ozone depletion. Two important distinct, but interconnected, applications of photochemistry are in photocatalytic treatment of wastes and in solar energy conversion. Semiconductor photochemistry plays an important role in these and is discussed with reference to both of these areas. Free radicals and reactive oxygen species are of major importance in many chemical, biological and medical applications of photochemistry, and are discussed in depth. The following chapters discuss the relevance of using light in medicine, both with various types of phototherapy and in medical diagnostics. The development of optical sensors and probes is closely related to diagnostics, but is also relevant to many other applications, and is discussed separately. Important aspects of applied photochemistry in electronics and imaging, through processes such as photolithography, are discussed and it is shown how this is allowing the increasing miniaturisation of semiconductor devices for a wide variety of electronics applications and the development of nanometer scale devices. The final two chapters provide the basic ideas necessary to set up a photochemical laboratory and to characterise excited states. This book is aimed at those in science, engineering and medicine who are interested in applying photochemistry in a broad spectrum of areas. Each chapter has the basic theories and methods for its particular applications and directs the reader to the current, important literature in the field, making Applied Photochemistry suitable for both the novice and the experienced photochemist.
This book contains the transcripts of the lectures presented at the NATO Advanced study Institute on "Computational Techniques in Quantum Chemistry and Molecular Physics," held at Ramsau, Germany, 4th - 21st Sept. 1974. Quantum theory was developed in the early decades of this century and was first applied to problems in chemistry and molecular physics as early as 1927. It soon emerged however, that it was impossible to con sider any but the simplest systems in any quantita tive detail because of the complexity of Schrodinger's equation which is the basic equation for chemical and molecular physics applications. This remained the si tuation until the development, after 1950, of elec tronic digital computers. It then became possible to attempt approximate solutions of Schrodinger's equa tion for fairly complicated systems, to yield results which were sufficiently accurate to make comparison with experiment meaningful. Starting in the early nineteen sixties in the United States at a few centres with access to good computers an enormous amount of work went into the development and implementation of schemes for approximate solu tions of Schrodinger's equation, particularly the de velopment of the Hartree-Fock self-consistent-field scheme. But it was soon found that the integrals needed for application of the methods to molecular problems are far from trivial to evaluate and cannot be easily approximated."
Photodynamic Therapy: From Theory to Application brings attention to an exceptional treatment strategy, which until now has not achieved the recognition and breadth of applications it deserves. The authors, all experts and pioneers in their field, discuss the history and basic principles of PDT, as well as the fundamentals of the theory, methods, and instrumentation of clinical diagnosis and treatment of cancer. Non-oncological applications such as the use of PDT in control of parasites and noxious insects are also discussed. This book serves as a standard reference for researchers and students at all levels, clinical specialists interested in the topic and those in industry exploring new areas for development. A comprehensive exposition of both the theory and application of PDT, this book fills the gaps in the current literature by bringing together both basic understanding of the process of PDT and an expanded vision of its applications.
Providing the quantum-mechanical foundations of chemical bonding, this unique textbook emphasizes key concepts such as superposition, degeneracy of states and the role of the electron spin. An initial, concise and compact presentation of the rudiments of quantum mechanics enables readers to progress through the book with a firm grounding. Experimental examples are included to illustrate how the abstract concepts are manifest in real systems.
This book covers broad aspects of the chemistry of -stacked polymers and low-molecular-weight molecules, from synthesis through theory. It is intended for graduate students and researchers in academia and industry and consists of chapters written by renowned scientists who have made significant contributions to this field in the past decade. -Stacked polymers and low-molecular-weight molecules are expected to replace main-chain conjugated polymers such as polyacetylenes and polythiophenes as organic conducting and energy-transferring substances that are important as materials for photo-electronic applications. -Stacked polymers and molecules have significant advantages over main-chain conjugated polymers, i.e., high solubility in solvents, large freedom in molecular design, and colorless nature.
This work describes novel, effective hydrogen-bond (HB) donor catalysts based on a known bifunctional tertiary amine-thiourea, a privileged structure, which has been proven to be one of the most widely used organocatalysts. These HB donor catalysts derived from quinazoline and benzothiadiazine were initially synthesized as novel HB donors with their HB-donating abilities being measured by analytical methods. They were found to be effective for a variety of asymmetric transformations including Michael reactions of a, b- unsaturated imides and hydrazination reactions of 1,3-dicarbonyl compounds. Thiourea catalysts that have an additional functional group are also described. Specifically, thioureas that bear a hydroxyl group were synthesized and subsequently used as novel bifunctional organocatalysts for catalytic, asymmetric Petasis-type reactions involving organoboronic acids as nucleophiles. These addition reactions were difficult to achieve using existing organocatalysts. One of the developed catalytic methods can be applied to the synthesis of biologically interesting peptide- derived compounds possessing unnatural vinyl glycine moieties. These findings introduce new criteria required for the development of organocatalysts for asymmetric reactions, thus making a significant contribution to the field of organocatalysis.
This book presents a selection of current capillary electrophoresis methods used to separate representative types of molecules and particles and in combination with different detection techniques. It includes practical details which are hard to find elsewhere. The volume is intended for beginners in the field and provides an overview of the technique and a starting point for the exploration of the defined literature on different application topics.
Hydrotreating catalysis with transition metal sulphides is one of the most important areas of industrial heterogeneous catalysis. The present book deals with the chemical and catalytic aspects of transition metal sulphides, focusing on their use in hydrotreating catalysis. The book?'s 12 chapters present reviews of solid-state, coordination and organometallic chemistry, surface science and spectroscopic studies, quantum chemical calculations, catalytic studies with model and real catalysts, as well as refinery processes. A presentation of state-of-the-art background to pertinent work in the field. Can be used as an introduction to the chemical and catalytic properties of transition metal sulphides as well as an advanced level reference.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of h- ardous pollutants. Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand. Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner. Fo- most among these technologies are electrochemical processes. While electrochemical technologies have been known and utilized for the tre- ment of wastewater containing heavy metal cations, the application of these p- cesses is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants. In fact, only recently the electrochemical oxidation process has been rec- nized as an advanced oxidation process (AOP). This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals.
Integrating both theoretical and applied aspects of electrochemistry, this acclaimed monograph series presents a review of the latest advances in the field. The current volume covers ion and electron transfer across monolayers of organic surfactants, determination of current distributions governed by Laplace's equation, and three other subjects.
Development in science depends on several factors. Among these, the role of individual scientists is perhaps not the most important one. Science is typically a body of collective knowledge and any increase in the amount of this knowledge is certainly due to strong interaction among scientists. Even in the past, it happened quite rarely that a single person, without any aid of others, d- covered something fundamental or opened a new chapter in science. Great figures of science history have, in most cases, had rather a summarizing and s- thesizing role. This is especially valid over the last few decades. On one hand, the amount of information necessary to achieve new discoveries, has increased tremendously. On the other hand, improvement of technical facilities has increased the speed of information exchange. These factors resulted in a degree of specialization in science that had never seen before. Most of us are experts and specialists rather than scientists in the classical sense. My personal feeling is that, even nowadays, there is a strong need for professionals with a broad knowledge and c- prehensive mind, although they may not be competitive in the number of their publications or the sizes of their grants. Every time I have met such a person (I can count these cases on my fingers) I have become deeply influenced by his or her strong intellect.
A renewed interest in aliphatic polyesters has resulted in developing materials important in the biomedical and ecological fields. Mainly materials such as PLA and PCL homopolymers have so far been used in most applications. There are many other monomers which can be used. Different molecular structures give a wider range of physical properties as well as the possibility of regulating the degradation rate. By using different types of initiators and catalysts, ring-opening polymerization of lactones and lactides provides macromolecules with advanced molecular architectures. In the future, new degradable polymers should be able to participate in the metabolism of nature. Some examples of novel polymers with inherent environmentally favorable properties such as renewability and degradability and a series of interesting monomers found in the metabolisms and cycles of nature are given.
The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically."
This book is dedicated to gas-phase thermal reactions which take place in engines, burners, and industrial reactors for the production of mechanical or thermal energy, for the incineration of pollutants, or for the manufacture of chemicals. It also studies their effect on the environment: fires, explosions, tropospheric pollution, the greenhouse effect, and holes in the ozone layer. After a short reminder of the concepts and laws of thermodynamics, and of chemical and physical kinetics, the book suggests a methodology for the kinetic modelling of these reactions: generation and reduction of reaction mechanisms, estimation of kinetic data of elementary reactions, estimation of the thermodynamic data and transport data of molecules and free radicals, and analysis and validation of mechanisms by comparison of calculated results with the experimental results obtained using laboratory reactors. The models thus generated carry all the information necessary to allow them to be incorporated into computer programs for the calculation of reactors or of the fluid dynamics of reacting gases. Tables of numerical data and a list of computer programs and URLs complete the book.
The development of "tailormade" electrode surfaces using electroactive polymer films has been one of the most active and exciting areas of electrochemistry over the last 15 years. The properties of these materials have been examined by a wide range of scientists from a variety of perspectives, and now electroactive polymer research is considered to be a reasonably mature area of research endeavor. Much is now understood about the fundamental mechanism of conduction in these materials. A wide range of electrochemical techniques may be used to probe the conductivity processes in these materials, and more recently, a number of in situ spectroscopic techniques have been used to further elucidate the structure of these materials. The in situ spectroscopies and allied techniques have also been used to obtain correlations between structure and redox activity. The applications found for electroactive polymers are many and varied, and range from thin film amperometric chemical and biological sensors, electrocatalytic systems, drug delivery devices, and advanced battery systems through to molecular electronic devices. The research literature on electroactive polymers is truly enormous and can daunt even the most hardened researcher. The vast quantity of material reported in the literature can also intimidate beginning graduate students. Hence the present book. The original idea for this book arose as a result of a series of lectures on chemically modified eiectrodes and electroactive polymers given by the writer to final-year undergraduates at Trinity College Dublin.
Time-Resolved FTIR Emission Studies of Photochemical Reactions (G. Hancock & D. Heard). A Model for the Influence of Organized Media on Photochemical Reactions (V. Ramamurthy, et al.). Up-Scaling Photochemical Reactions (A. Braun, et al.). Photochemistry of the Xanthine Dyes (D. Neckers & O. Valdes-Aguilera). Indexes.
Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology includes peer-reviewed contributions based on carefully selected presentations given at the 17th International Workshop on Quantum Systems in Chemistry, Physics, and Biology. New trends and state-of-the-art developments in the quantum theory of atomic and molecular systems, and condensed matter (including biological systems and nanostructures) are described by academics of international distinction.
Protein glycosylation is now acknowledged as a major posttranslational modification with significant effects on protein folding, conformation distri- bution, stability, and activity. The added oligosaccharide chains are large and diverse and have specific recognition motifs important in many aspects of cell interactions and regulation. As such, there is a growing need to communicate the analytical methods of the specialist carbohydrate chemist, biochemist, and physicochemist to protein experts and the pharmaceutical industry. Other areas that come under the influence of the glycosciences are DNA interactions with ubiquitous saccharide-containing antibiotics and antitumor drugs; inhibitors of viral infection; bacterial, mycobacterial, and parasite antigens; glycolipids; glycophosphatidylinositol protein membrane anchors; and (glyco)protein- proteoglycan interactions. Compared to the first edition of this book, Glycopro- tein Analysis in Biomedicine, less emphasis is given to biomedical aspects, but these chapters are still pertinent today. The significant differences in the con- tent relate to advances in analysis relevant to biotechnology; for example, the production of recombinant glycoproteins and other therapeutics. It must also not be forgotten that the methods here described in Glycoanalysis Protocols are relevant to exploiting the commercial potential of carbohydrates in fields related to agriculture, food, and the domestic and chemical industries. The emphasis of the book remains in bringing the glycosciences into mainstream biochemistry. The analytical methods covered in Glycoanalysis Protocols are the re- sult of experts translating their life's works into easy-to-follow recipes.
This book provides an interdisciplinary presentation of the current knowledge of pattern formation in complex system, with sufficiently many details, tools, and concrete examples to be useful for the graduate student or scientist entering this area of research.
This book presents an up to date review of many aspects of Interfacial Electrochemistry and points direction of future developments. Traditional routes for the study of the electrochemical interface are reviewed, critically discussed and the available experimental data is analysed. Complementary information is presented as obtained from the sucessful application of the various in-situ reflectance spectroscopies. The use of single crystal face electrodes to study the electrochemical interface is emphasized with particular relevan- ce to the technique to prepare clean surfaces. Some relevant re- sults obtained for single crystal face electrodes are presented. This book presents also the techniques to study other interfaces such-as the ionic-solution, immiscible liquid-liquid and gas-so- lid interfaces. The information gained 'is put in parallel to the solid-electrolyte solution interface. More specific aspects of the electrochemical interface are covered with chapters on phase-transitions occuring on 2D ad- sorbed layers and on electrochemical kinetics where the dependen- ce of the electrochemical rate parameters upon the solvent struc- ture and electrode material is emphasized. The final chapters reviews of the present state of solvent models interfaces and the recently developed theories of the eleGBP trochemical interfaces in which an association is made of models for the metal with the models for the electrolyte solution. This book is a result of a NATO A. S. 1. on "Trends in Interfacial Electrochemistry", held in Viana do Castelo from 2 to 13th July 1984 which brought together experts of the above men- tioned aspects of Interfacial Electrochemistry.
The Matching Method for Asymptotic Solutions in Chemical Physics
Problems by A. M. Il'in, L. A. Kalyakin, and S. I. Maslennikov
Timely, authoritative, and invaluable to researchers in all areas of chemical physics, Singular Perturbation Problems in Chemical Physics is an essential resource.
Square-wave voltammetry is a technique readily available to every researcher, scientist, engineer and practitioner applying modern electrochemical measurement systems. It is of beneficial use in analytical applications and in fundamental studies of electrode mechanisms. But the optimised exploitation of this technique is only possible for those with a detailed knowledge of signal generation and of the thermodynamics and kinetics involved. This volume, written by three distinguished experts, systematically delivers the complete and in-depth information that enables both researchers and users of square-wave voltammetry to apply this technique effectively. Square-Wave Voltammetry also offers an appendix on mathematical modeling and a chapter on the most important electrode mechanisms which briefly reviews the underlying theory and numerical formulae intrinsic for simulating experiments with popular software tools, e.g. Mathcad (R). |
![]() ![]() You may like...
The Code - The Power Of "I Will"
Shaun Tomson, Patrick Moser
Paperback
![]()
Handbook of Thermal Analysis and…
Sergey Vyazovkin, Nobuyoshi Koga, …
Paperback
Law Enforcement Planning - The Limits of…
Jeffrey L. Sedgwick
Hardcover
R2,498
Discovery Miles 24 980
Eustasy, High-Frequency Sea Level Cycles…
Mu Ramkumar, David Menier
Paperback
R1,363
Discovery Miles 13 630
|