![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
In the area of organic chemistry one major challenge we are currently faced with is how to assemble potentially useful molecules in new ways that generate molecular complexity and in sequences that are as efficient as possible. Our efforts in this regard, specifically for the preparation of amino containing compounds incorporating an aromatic ring, are described in this doctoral thesis. We discovered an interesting regioselectivity in an intramolecular Heck reaction, which we studied for a series of substrates that are unbiased in terms of the size of the newly formed ring, where very high levels of selectivity in relation to the new carbon-carbon bond are typically observed. DFT calculations were performed to attempt to shed light on the reaction sequence. This regioselective Heck reaction, combined with the reductive removal of the temporary amino-protecting group, allowed us to synthesize the Sceletium alkaloids: mesembrane, mesembranol and mesembrine.
This book is about the interaction of laser radiation with various surfaces at variable parameters of radiation. As a basic principle of classification we chose the energetic or intensity level of interaction of laser radiation with the surfaces. These two characteristics of laser radiation are the most important parameters defining entire spectrum of the processes occurring on the surfaces during interaction with electromagnetic waves. This is a first book containing a whole spectrum of the laser-surface interactions distinguished by the ranges of used laser intensity. It combines the surface response starting from extremely weak laser intensities (~1 W cm-2) up to the relativistic intensities (~1020 W cm-2 and higher). The book provides the basic information about lasers and acquaints the reader with both common applications of laser-surface interactions (laser-related printers, scanners, barcode readers, discs, material processing, military, holography, medicine, etc) and unusual uses of the processes on the surfaces under the action of lasers (art conservation, rangefinders and velocimeters, space and earth explorations, surface engineering and ablation, and others). The scientific applications of laser-surfaces interactions (surface optical nonlinearities, surface enhanced Raman spectroscopy, surface nanostructuring, nanoripples and clusters formation, X-ray lasers and harmonic generation from the surfaces) are discussed from the point of view of the close relations between the properties of surface and matter, which is a cornerstone of most of studies of materials. The novelty of the approach developed in Laser - Surface Interactions is related with the interconnection of scientific studies with numerous applications of the laser-surface interactions separated in different chapters by the ranges of laser intensities. We present most recent achievements in this field. The book provides valuable information for different ranges of reader's preparedness to the laser-related topics (from unprepared readers, to students, engineers and researchers, professionals and academics).
Aerosols play a critical role in a broad range of scientific disciplines, such as atmospheric chemistry and physics, combustion science, drug delivery and human health. This thesis explores the fundamentals of a new technique for capturing single or multiple particles using light, and for characterising these particles by Raman or fluorescence spectroscopy. The outcome of this research represents a significant development in optical manipulation techniques, specifically in optical tweezing. These findings can be applied to studies of the mass accommodation of gas-phase water molecules adsorbing onto a water surface. Not only is this a fundamental process of interest to physical chemists, but it is important for understanding the role of aerosol particles in the atmosphere, including their ability to become cloud droplets. This new strategy for investigating aerosol dynamics is fundamental in helping us understand the indirect effect of aerosols on the climate.
The book introduces the outcomes of latest research in the field of Chemical Engineering. The book also illustrates the application of Chemical Engineering principles to provide innovative and state of the art solutions to problems associated with chemical industries. It covers a wide spectrum of topics in the area of Chemical Engineering such as Transfer operations, novel separation processes, adsorption, photooxidation, process control, modelling, and simulation. The book provides timely contribution towards implementation of recent approaches and methods in Chemical Engineering Research. It presents chapters focussed on several Chemical Engineering principles and methodologies of wide multidisciplinary applicability. The intended audience of this book will mainly consist of researchers, research students, and practitioners in Chemical Engineering and allied fields. The book can also serve researchers and students involved in multidisciplinary research.
Systematic investigations of the structure, mechanics, and dynamics of biological surfaces help us understand more about biological processes taking place at cell and bacteria surfaces. Presented here is a study of the role membrane-bound saccharides play in the modulation of interactions between cells/bacteria and their environments. In this thesis, membrane structures were probed perpendicular and parallel to the surface, and sophisticated planar models of biomembranes composed of glycolipids of various structural complexities were designed. Furthermore, specular and off-specular X-ray and neutron scattering experiments were carried out. This research has led to the development of several new methods for extracting information on the structure and mechanics of saccharide-rendered biomembranes from the measured scattering signals. In fact, more is now known about the influence of the saccharide structure. These results demonstrate that the study of planar model systems with X-ray and neutron scattering techniques can provide comprehensive insight into the structure and mechanics of complex biological surfaces.
This book completes the physical foundations and experimental techniques described in volume 1 with an updated review of the accessory equipment indispensable in molecular beam experiments. It extends the subject to cluster beams and beams of hyperthermal and subthermal energies. As in volume 1, a special effort is made to outline the physical foundations of the various experimental techniques. Hence this book is intended not only as a reference standard for researchers in the field, but also to bring the flavor of current molecular beam research to advanced undergraduates and graduate students and to enable them to gain a solid background in the field and its technique.
Molecular properties and reactions are controlled by electrons in the molecules. Electrons had been thought to be particles. Quantum mechanics showed that el- trons have properties not only as particles but also as waves. A chemical theory is required to think about the wave properties of electrons in molecules. These prop- ties are well represented by orbitals, which contain the amplitude and phase ch- acteristics of waves. This volume is a result of our attempt to establish a theory of chemistry in terms of orbitals - A Chemical Orbital Theory. The amplitude of orbitals represents a spatial extension of orbitals. An orbital strongly interacts with others at the position and in the direction of great extension. Orbital amplitude controls the reactivities and selectivities of chemical reactions. In the first paper on frontier orbital theory by Fukui the amplitude appeared in the form of its square, i.e., the density of frontier electrons in 1952 (Scheme 1). Orbital mixing rules were developed by Libit and Hoffmann and by Inagaki and Fukui in 1974 and Hirano and Imamura in 1975 to predict magnitudes of orbital amplitudes (Scheme 2) for understanding and designing stereoselective reactions.
The current volume in the series "Vibrational Spectra and Structure" is a single topic volume on the vibrational spectra of molecules containing silicon in the solid state. "Molecular Approaches to Solids" has been treated by the workers in the Institute for Silicate Chemistry of the Russian Academy of Science in St. Petersburg for the past two decades. In the last 15 years, a number of publications have originated from the laboratory where quantum mechanical computations for suitably selected molecules have been utilized to explain the origins of some structure bonding interrelationships and silicates and to evaluate their force constants. Since most of the developments in this area have been published in the Russian literature they remain relatively inaccessible to the Western scientists. This volume is a compilation of many of these publications and summarizes the essential conclusions of these studies. Unfortunately, Professor Lazarev passed away after he had
submitted the volume for publication.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
The union of covalent and noncovalent chemistries manifested in the mechanical bond represents one of the great chemical triumphs of the last half century. However, until recently, the preparation of mechanically interlocked compounds has often been an inefficient and limiting process. This thesis provides a detailed account of the great strides taken to increase the synthetic accessibility of donor-acceptor mechanically interlocked molecules by the application of highly efficient and ultra mild chemical transformations during their template-directed synthesis. These new departures in synthesis have indeed played a transformative role in that more complex, higher-order, and functional architectures - once only a dream - are now comfortably within reach. Specifically, the formation of mechanical bonds in higher order rotaxanes and catenanes has become ever easier through the use of highly efficient click chemistries. The resulting mechanically interlocked compounds are functional molecular media for a host of applications including information storage, mechanical actuation, and drug release.
The papersin this volume are as a resultofcontributions given at the NATO Advanced Study Institute heldat L1andinam Building, University CollegeofWales, Aberystwyth, 10 - 23 September 1989. The Institute considered the physical and chemical propertiesof a variety ofcolloidal systems ranging from simple micellar solutions to concentrated colloidal dispersions. The purpose ofthe NATO Advanced Study Institute was to create a forum so that research scientists working in different areas concerned with colloid science could interact. The emphasL oft1"l.;: contributions were on the interpretation ofthe different experimental and theoretical approach to give information on the structure, dynamics and equilibrium propertiesofthese systems. The application ofseveral different techniques in colloid science have been described; new developments and perspectives have been covered by several authors. The present volume reviews the current stale ofthe art in this area and it is hoped that it will be used as an incentive for further studies particularlywith reference to new areas ofresearch. In the organisation ofthe scientific programme for the NATO meeting we would like to acknowledge the assistance ofProfessors J. Lyklema, D. G. Hall and J. Holzwarth. We wish to thank Miss Mandy Rudd for all the secretarial assistance in setting up the meeting and for the invaluable assistance in preparing the manuscripts. In connection with the proceedings we would also like to thank Miss Sandra Fahy for assistance. The help of Paul Jones and Mrs G. Wyn-Jones during the meeting is also gratefully acknowledged.
Integrating both theoretical and applied aspects of electrochemistry, this acclaimed monograph series presents a review of the latest advances in the field. The current volume includes chapters on the mechanism of nerve excitation from an electrochemical standpoint, the electronic factor in the kinetics of charge-transfer reaction, and five other subjects.
Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.
The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of biomaterials, discovery of novel phenomena and biological processes occurring at the molecular level.
This book presents an in-depth study into the utility of -bond metathesis in Group 2 mediated reactivity. A comprehensive introduction defines the state of the art in both Group 2 mediated catalysis and dehydrocoupling. Structural investigations giving rise to a range of mixed s-block metal hydrides including a remarkable dodecabimetallic decahydride are then described. Subsequent extensive mechanistic work focussing on both silicon-nitrogen and boron-nitrogen dehydrocoupling gives insights into both congeneric effects down Group 2 and ligand effects centring upon magnesium. These studies show the striking effects of these factors, as well as the electronic nature of the hydridic coupling partner. Finally, the unprecedented introduction of single-electron transfer steps into Group 2 catalytic manifolds is described. The use of the stable radical TEMPO to induce single-electron transfer to substituents bound to Group 2 centres coupled with -bond metathesis allows a novel hydrogen release from silanes.
"Advanced Topics in Theoretical Chemical Physics"" "is a collection of 20 selected papers from the scientific presentations of the Fourth Congress of the International Society for Theoretical Chemical Physics (ISTCP) held at Marly-le-Roi, France, in July 2002. "Advanced Topics in Theoretical Chemical Physics" encompasses a broad spectrum in which scientists place special emphasis on theoretical methods in chemistry and physics. The chapters in the book are divided into five sections: I: Advances Chemical Thermodynamics II: Electronic Structure of Molecular Systems III: Molecular Interaction and Dynamics IV: Condensed Matter V: Playing with Numbers This book is an invaluable resource for all academics and researchers interested in theoretical, quantum or statistical, chemical physics or physical chemistry. It presents a selection of some of the most advanced methods, results and insights in this exciting area. "Advanced Topics in Theoretical Chemical Physics" encompasses a broad spectrum in which scientists place special emphasis on theoretical methods in chemistry and physics. The chapters in the book are divided into five sections: I: Advances Chemical Thermodynamics II: Electronic Structure of Molecular Systems III: Molecular Interaction and Dynamics IV: Condensed Matter V: Playing with Numbers This book is an invaluable resource for all academics and researchers interested in theoretical, quantum or statistical, chemical physics or physical chemistry. It presents a selection of some of the most advanced methods, results and insights in this exciting area.
This edition of Thermodynamics is a thoroughly revised, streamlined, and cor rected version of the book of the same title, first published in 1975. It is intended for students, practicing engineers, and specialists in materials sciences, metallur gical engineering, chemical engineering, chemistry, electrochemistry, and related fields. The present edition contains many additional numerical examples and prob lems. Greater emphasis is put on the application of thermodynamics to chemical, materials, and metallurgical problems. The SI system has been used through out the textbook. In addition, a floppy disk for chemical equilibrium calculations is enclosed inside the back cover. It contains the data for the elements, oxides, halides, sulfides, and other inorganic compounds. The subject material presented in chapters III to XIV formed the basis of a thermodynamics course offered by one of the authors (R.G. Reddy) for the last 14 years at the University of Nevada, Reno. The subject matter in this book is based on a minimum number of laws, axioms, and postulates. This procedure avoids unnecessary repetitions, often encountered in books based on historical sequence of development in thermodynamics. For example, the Clapeyron equation, the van't Hoff equation, and the Nernst distribution law all refer to the Gibbs energy changes of relevant processes, and they need not be presented as radically different relationships."
Thermodynamics of non-equilibrium processes is a comparatively new area of thermodynamics. Traditionally this discipline is taught only to chemistry students who have a very strong background in physics. The author of the present book has adaptedhis course of thermodynamics of non-equilibrium processes so that the subject can be treated in terms understandable to any chemist with a formal physicochemical education in the fields of classical thermodynamics of equilibrium processes and traditional chemical kinetics. The discipline combines thermodynamics and chemical kinetics and is helpful to researchers engaged in studying complex chemical transformations, in particular, catalytic transformations. For example, important concepts for such studies are conditions of kinetic irreversibility of complex stepwise stoichiometric reactions, rate-determining and rate-limiting stages, etc. In traditional chemical kinetics, these concepts are not very clear and tend to be concealed in courses. Fortunately, these concepts appear to be consistently and properly defined in terms of thermodynamics of non-equilibrium processes. The present book is the synopsis of lectures on thermodynamics
of non-equilibrium processes and a particular course on
thermodynamics of operating catalysts. Applies simple approaches of non-equilibrium thermodynamics to analyzing properties of chemically reactive systems Covers systems far from equilibrium, allowing the consideration of most chemically reactive systems of a chemical or biological nature This approach resolves many complicated problems in the teaching of chemical kinetics "
The focus of the present work is nonrelativistic and relativistic quantum mechanics with standard applications to the hydrogen atom. The author has aimed at presenting quantum mechanics in a comprehensive yet accessible for mathematicians and other non-physicists. The genesis of quantum mechanics, its applications to basic quantum phenomena, and detailed explanations of the corresponding mathematical methods are presented. The exposition is formalized (whenever possible) on the basis of the coupled Schroedinger, Dirac and Maxwell equations. Aimed at upper graduate and graduate students in mathematical and physical science studies.
There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B, B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative "routine CW EPR" is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.
This thesis presents an experimental study of the ultrafast molecular dynamics of CO_2 DEGREES+ that are induced by a strong, near-infrared, femtosecond laser pulse. In particular, typical strong field phenomena such as tunneling ionisation, nonsequential double ionisation and photo-induced dissociation are investigated and controlled by employing an experimental technique called impulsive molecular alignment. Here, a first laser pulse fixes the molecule in space, such that the molecular dynamics can be studied as a function of the molecular geometry with a second laser pulse. The experiments are placed within the context of the study and control of ultrafast molecular dynamics, where sub-femtosecond (10 DEGREES-15 seconds) resolution in ever larger molecular systems represents the current frontier of research. The thesis presents the required background in strong field and molecular physics, femtosecond laser architecture and experimental techniques in a clear and accessible language that does not require any previous knowledge in
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This volume is a continuation of the five volumes of "The Chemistry of the Actinide and Transactinide Elements" (published 2006). It expounds on topics in actinide science that are undergoing rapid scientific developments and that are germane to the safe development of nuclear energy in the 21st century, from nuclear fuels to the environmental science and management of waste. The scope of Volume 6 encompasses: actinides in the geosphere, subsurface interactions of actinides species with microorganisms, chemistry of nuclear fuels, actinide waste forms and radiation effects, analytical chemistry of plutonium, actinide chalcogenide compounds, molecular spectroscopy and reaction of the actinide ions in the gas phase and rare gas matrices, and hydrothermal synthesis of actinide compounds. This volume is written by active practitioners and recognized experts in their specialty areas. Each of the topics represents the current state of knowledge in this fascinating area of science and technology. |
![]() ![]() You may like...
Corporate Rebels - Make work more fun
Joost Minnaar, Pim de Morree
Hardcover
Actor-Network Theory at the Movies…
Bjoern Sonnenberg-Schrank
Hardcover
R2,634
Discovery Miles 26 340
Family Business Case Studies Across the…
Jeremy Cheng, Luis Diaz-Matajira, …
Hardcover
R3,035
Discovery Miles 30 350
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
![]()
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
|