![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This book explores how structure impacts the dynamics of organic molecules in an extensive and impressive range of femtosecond time-resolved experiments that are combined with state-of-the-art theoretical approaches. It explores an area of molecular dynamics that remains largely uncharted and provides an extraordinary overview, along with novel insights into the concept of the dynamophore - the functional group of ultrafast science. Divided into four parts, this book outlines both experimental and computational studies on the VUV photoinduced dynamics of four cyclic ketones and one linear ketone, the ring-opening and dissociative dynamics of cyclopropane, and the potential ultrafast intersystem crossing in three methylated benzene derivatives. Model systems for the disulfide bond and the peptide bond, both of which are related to the structure of proteins, are also investigated. This highly informative and carefully presented book offers a wealth of scientific insights for all scholars with an interest in molecular dynamics.
This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.
This book introduces various types of reactions to produce chemicals by the direct conversion of methane from the point of view of mechanistic and functional aspects. The chemicals produced from methane are aliphatic and aromatic hydrocarbons such as propylene and benzene, and methanol. These chemicals are created by using homogeneous catalysts, heterogeneous catalysts such as zeolites, and biocatalysts such as enzymes. Various examples of methane conversion reactions that are discussed have been chosen to illustrate how heterogeneous and homogenous catalysts and biocatalysts and/or their reaction environments control the formation of highly energetic species from methane contributing to C-C and C-O bond formation.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications.
This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm(2) are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schroedinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possible gauges for the field-matter interaction are discussed. Physical phenomena, ranging from paradigmatic Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high-order harmonics, the ionization and dissociation of molecules, as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way, the theoretical background for state of the art experiments with strong and short laser pulses is given. The new text is augmented by several additional exercises and now contains a total of forty-eight problems, whose worked-out solutions are given in the last chapter. In addition, some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature.
This title contains proceedings from the Fourth Tokyo Conference on
Advanced Catalytic Science and Technology, Tokyo, July 14-19, 2002.
The conference goal was to promote closer cooperation between
industry and academia, to stimulate new catalytic technologies as
well as fundamental research, and to create new concepts for the
development of effective catalytic systems. It contains a selection
of works, which present the most up-to-date research in catalysis.
Following in the wake of Chang's two other best-selling physical chemistry textbooks, this new title introduces laser spectroscopist Jay Thoman (Williams College) as co-author. This new text has been comprehensively reviewed regarding both level and scope. Targeted to a mainstream physical chemistry course, this text features extensively revised chapters on quantum mechanics and spectroscopy, many new chapter-ending problems, and updated references, while biological topics have been largely relegated to the previous two textbooks. Other topics added include the law of corresponding states, the Joule-Thomson effect, the meaning of entropy, multiple equilibria and coupled reactions, and chemiluminescence and bioluminescence. One way to gauge the level of this new text is that students who have used it will be well prepared for their GRE exams in the subject. Careful pedagogy and clear writing throughout combine to make this an excellent choice for your physical chemistry course. Support materials are available for this title. For more details please contact [email protected] "With expanded coverage and more depth, Chang's newest book is now an excellent fit for students on the BS Chemistry track. It will provide them with the rigorous foundations knowledge they need for advanced studies in any sub-disciplines of chemistry, including biochemistry/biophysical chemistry." -Taina Chao, State University of New York, Purchase "The most student-friendly P Chem text available." -Howard Mayne, University of New Hampshire "I expect this textbook will be high on the list for instructors seeking a thorough, integrated approach to the subject of Physical Chemistry, combined with a clear and conversational writing style." -Alan Van Orden, Colorado State University "The new Chang/Thoman text is very good. I like its approach and it is very easy to read and well organized. In my opinion, this text makes a much better approach to Physical Chemistry than the other texts currently sold." -Mark Obrovac, Dalhousie University NOT AVAILABLE IN NORTH AMERICA AND CANADA
Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.
Familiar combinations of ingredients and processing make the structures that give food its properties. For example in ice cream, the emulsifiers and proteins stabilize partly crystalline milk fat as an emulsion, freezing (crystallization) of some of the water gives the product its hardness and polysaccharide stabilizers keep it smooth. Why different recipes work as they do is largely governed by the rules of physical chemistry. This textbook introduces the physical chemistry essential to understanding the behavior of foods. Starting with the simplest model of molecules attracting and repelling one another while being moved by the randomizing effect of heat, the laws of thermodynamics are used to derive important properties of foods such as flavor binding and water activity. Most foods contain multiple phases and the same molecular model is used to understand phase diagrams, phase separation and the properties of surfaces. The remaining chapters focus on the formation and properties of specific structures in foods - crystals, polymers, dispersions and gels. Only a basic understanding of food science is needed, and no mathematics or chemistry beyond the introductory college courses is required. At all stages, examples from the primary literature are used to illustrate the text and to highlight the practical applications of physical chemistry in food science.
This book shows the availability and potential of the coupled acoustic-gravitational (CAG) field for trace-level biosensing. The proposed detection scheme also allows the evaluation of the kinetics and thermodynamics of the reaction occurring on a single microparticle (MP). This method has wide applicability in important fields, involving not only chemistry but also life, environmental, and medical sciences. The author proposes novel trace-level biosensing based on measurements of the levitation coordinate shift of an MP in the CAG field. The levitation coordinate of the MP in the CAG field is determined by its density and compressibility. The levitation coordinate shift is induced by the binding of gold nanoparticles (AuNPs) to the MP through interparticle reactions. Therefore, the quantity of molecules involved in the reaction can be determined from the levitation coordinate shift. The author demonstrates the zmol level detection for biotin, DNA/RNA, and organic molecules. In addition, the kinetics and thermodynamics are evaluated for various reactions occurring between the MP and AuNP, such as the avidin-biotin reaction, direct hybridization, sandwich hybridization, and aptamer-target complexation. This book provides a new concept based on the CAG field, in which the extent of a reaction is converted into the levitation coordinate shift, that is, "length." The proposed method has many advantages over other methods, e.g., high biocompatibility, high applicability, and short analysis time. In addition, because the apparatus used in this study is inexpensive and easy to miniaturize, this method is useful in important practical fields, such as forensic and environmental science and diagnosis. Thus, this book inspires many researchers to apply the present method to their own fields of interest.
Grain boundaries are a main feature of crystalline materials.
They play a key role in determining the properties of materials,
especially when grain size decreases and even more so with the
current improvements of processing tools and methods that allow us
to control various elements in a polycrystal. The book is divided in three parts: This part covers a new and topical development in the field. It presents for the first time an avenue for researchers working on macroscopic aspects, to approach the scale of description of grain boundaries. Audience: graduate students, researchers and engineers in Materials Science and all those scientists pursuing grain boundary engineering in order to improvematerials performance.
This book is a research monograph summarizing recent advances related to the molecular structure of water and ice, and it is based on the latest spectroscopic data available. A special focus is given to radio- and microwave frequency regions. Within the five interconnected chapters, the author reviews the electromagnetic waves interaction with water, ice, and moist substances, discussing the microscopic mechanisms behind the dielectric responses. Well-established classic views concerning the structure of water and ice are considered along with new approaches related to atomic and molecular dynamics. Particular attention is given to nanofluidics, atmospheric science, and electrochemistry. The mathematical apparatus, based on diverse approaches employed in condensed matter physics, is widely used and allows the reader to quantitatively describe the electrodynamic response of water and ice in both bulk and confined states. This book is intended for a wide audience covering physicists, electrochemists, geophysicists, engineers, biophysicists, and general scientists who work on the electromagnetic radiation interaction with water and moist substances.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Ruthenium Oxidation Complexes explores ruthenium complexes, particularly those in higher oxidation states, which function as useful and selective organic oxidation catalysts. Particular emphasis is placed on those systems which are of industrial significance. The preparation, properties and applications of the ruthenium complexes are described, followed by a presentation of their oxidative properties and summary of the different mechanisms involved in the organic oxidations (e.g. oxidations of alcohols, alkenes, arenes and alkynes, alkanes, amines, ethers, phopshines and miscellaneous substrates). Moreover, future trends and developments in the area are discussed. This monograph is aimed at inorganic, organic, industrial and catalysis chemists, especially those who wish to carry out specific organic oxidations using catalytic methods.
This book elaborates the corrosion testing and assessment methods for the aluminum alloy vessel in the service and internal environment. The emphasis is placed on the research of general materials corrosion characteristics, electrochemical protection design, surface protection, coating and painting, etc. This book helps readers to keep abreast of the whole technology system of the corrosion prevention and control of aluminum alloy vessel, especially the systematic engineering view of life cycle corrosion control for the vessel is of particular interest to readers.
The NATO ARW "Molecular Self-Organization in Micro-, Nano-, and Macro- Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins" to commemorate Professor Alexander S. Davydov was held in Kiev, Ukraine, on 8-12 June, 2008, at the Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine. Theobjective ofthisNATOARWistounveilandformulatetheprincipalfeatures that govern myriads of the molecular self-organization processes in micro-, nano-, and macro-dimensions from the following key representatives such as liquid - ter and aqueous solutions, and molecular liquids, nanodots, nanoparticles including gold, solitons, biomolecules such as DNA and proteins, biopolymers and bios- sors, catalysis, molecular modeling, molecular devices, and thin ?lms, and to offer another, more advanced directions in computational, experimental, and technolo- cal areas of nano- and bioscience towards engineering novel and powerful molecular self-organized assemblies with tailored properties. Nanoscience is indeed one of the most important research and development fr- tiers in modern science. Simplistically, nanoscience is the science of small particles of materials of a size of nanometre. Molecular nanoscience and nanotechnology have brought to us the unprecedented experimental control of the structure of matter with novel extraordinary properties that open new horizons and new opportunities, and new ways to make things, particularly in our everyday life, to heal our bodies, and to care of the environment. Unfortunately, they have also brought unwelcome advances in weaponry and opened yet more ways to foul up the world on an en- mous scale.
Channels of nanotubular dimensions exist in a variety of materials (examples are carbon nanotubes and the nanotubular channels of zeolites and zeotypes) and show promise for numerous applications due to their unique properties. One of their most important properties is their capacity to adsorb molecules and these may exist in a variety of phases. "Adsorption and Phase Behaviour in Nanochannels and Nanotubes" provides an excellent review of recent and current work on adsorption on nanometerials. It is an impressive collection of papers dealing with the adsorption and phase behaviour in nanoporous materials from both experimental and theoretical perspectives. "Adsorption and Phase Behaviour in Nanochannels and Nanotubes" focuses on carbon nanotubes as well as zeolites and related materials.
Biosensors are making a large impact in environmental, food, biomedical, and other applications. In comparison to standard analytical detection methods, such as minimal sample preparation and handling, they offer advantages including real time detection, rapid detection of the analytes of concern, use of non-skilled personnel, and portability. The aim of this book is to focus on research related to the rapid detection of agents and weapons of bioterrorism and provide a comprehensive review of the research topics most pertinent to advancing devices applicable to the rapid real-time detection of toxicants such as microbes, pathogens, toxins, or nerve gases. The ongoing war on terrorism and the rising security concerns are driving the need for newer faster biosensors against bio-warfare agents for both military and civil defence applications. The volume brings together contributions from the most eminent international researchers in the field, covering various aspects of work not so far published in any scientific journal and often going beyond the "state of art" . Readers of these review articles will learn new technological schemes that can lead to the construction of devices that will minimize the risk of bio-terrorism."
The aim of Molecular and Nano Electronics: Analysis, Design and
Simulation is to draw together contributions from some of the most
active researchers in this new field in order to illustrate a
theory guided-approach to the design of molecular and
nano-electronics. The field of molecular and nano-electronics has
driven solutions for a post microelectronics era, where
microelectronics dominate through the use of silicon as the
preferred material and photo-lithography as the fabrication
technique to build binary devices (transistors). The construction
of such devices yields gates that are able to perform Boolean
operations and can be combined with computational systems, capable
of storing, processing, and transmitting digital signals encoded as
electron currents and charges. Since the invention of the
integrated circuits, microelectronics has reached increasing
performances by decreasing strategically the size of its devices
and systems, an approach known as scaling-down, which
simultaneously allow the devices to operate at higher speeds.
"Ionic liquids will never find application in industry", "I don't understand this fad for ionic liquids" and "there is no widespread interest in these systems" are just three of quotes from the reports of referees for research proposals that I have received over the years. I wonder what these people think today. There are currently at least nine large-scale industrial uses of ionic liquids, including, we now rec- nise, the production of ?-Caprolactam (a monomer for the production of nylon-6) [1]. There has been a steady increase in the interest in ionic liquids for well over a decade and last year the number of papers and patents including ionic liquids was counted in the thousands. This remarkable achievement has been built on the hard work and enthusiasm, first of a small band of devotees, but now of huge numbers of scientists all over the world who do not see themselves as specialists in ionic liquids. The ionic liquids field continues to develop at an incredible rate. No sooner do I think that I am on top of the literature than it turns out that a whole new area of work has emerged without me noticing. Things that were once supposedly impos- 1 sible in ionic liquids, such as measuring the H NMR of solutes, are now widely applicable (see Chapter 8). Hence, collected volumes such as this are very w- come.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. Fro over 90 years The Royal Society of chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic, and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Fuel Cells have become a potentially highly efficient sustainable source of energy and electricity for an ever-demanding power hungry world. The two main types of fuel cells ripe for commercialisation are the high temperature solid oxide fuel cell (SOFC) and the low temperature polymer electrolyte membrane fuel cell (PEM). The commercial uses of which include, but are not limited to, military, stand-by power, commercial and industrial, and remoter power. However, all aspects of the electricity market are being considered. This book has brought together a team of world-renowned experts in all aspects of fuel cell development for both SOFC and PEM in a workshop environment. The workshop held between June 6-10, 2004 was held in the capital city of the Ukraine, Kiev. The reason for the venue was that Ukraine is the third largest resource of zircon sands, a major source of material for the solid oxide fuel cell. Ukraine is looking at undertaking a very large effort in the solid oxide fuel cell arena, and hopes, one day, to be an international player in this market, and this book is an outcome from the workshop. The book focuses on the issues related to fuel cells, particularly the state-of-the-art internationally, the issues that were of particular interest for getting fuel cells fully commercialized, and advances in fuel cell materials and technology. The focus was on all types of fuel cells, but the emphasis was particularly on solid oxide fuel cells (SOFC), due to their importance to the host country. The book is an essential reference to researchers, academics and industrialists interested in up-to-date information on SOFC and PEM development.
This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.
This book covers the basic principles and application of nanoindentation technology to determine residual stresses in films and coatings. It briefly introduces various detection technologies for measuring residual stresses, while mainly focusing on nanoindentation. Subsequently, nanoindentation is used to determine residual stresses in different types of films and coatings, and to describe them in detail. This book is intended for specialists, engineers and graduate students in mechanical design, manufacturing, maintenance and remanufacturing, and as a guide to the practice of production with social and economic benefits. |
![]() ![]() You may like...
How to Lead Academic Departments…
Adam Lindgreen, Alan Irwin, …
Paperback
R1,394
Discovery Miles 13 940
|