Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry
Knoevenagel Reaction of Unprotected Sugars, By M.-C. Scherrmann; Carbohydrate-Based Lactones: Synthesis and Applications, By N. M. Xavier, A. P. Rauter, and Y. Queneau; Heterogeneously-Catalyzed Conversion of Carbohydrates, By K. De Oliveira Vigier and F. Jerome; Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides, By S. Bouquillon, J. Muzart, C. Pinel, and F. Rataboul; Monosaccharides, By J.A. Galbis and M.G. Garcia-Martin; Natural Sources, By L. Weignerova and V. K en; Synthesis and Applications of Ionic Liquids Derived from Natural Sugars; By C. Chiappe, A. Marra, and A. Mele"
Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described.
Since 1948, this series has filled the gap between the papers that
report on and the textbooks that teach in the diverse areas of
catalysis research. The editors of and contributors to Advances in
Catalysis are dedicated to recording progress in this area. Each
volume of Advances in Catalysis contains articles covering a
subject of broad interest.
This book describes state-of-the-art borylation chemistry using copper(I) catalysis. Enantioselective reactions are included to afford a variety of functionalized, complex organoboronate esters, which will find wide application in asymmetric synthesis, drug discovery, and material science. Organoboron compounds are recognized as useful reagents in organic synthesis; therefore, great effort has been devoted to the development of a simple, mild, and efficient method for their preparation in the past several years. However, the synthesis of functionalized organoboron compounds remains a challenging issue because known reactions often require the use of highly reactive organometallic carbon nucleophiles. This book focuses on conceptually new, formal nucleophilic copper(I)-catalyzed borylation reactions with diboron compounds that show high selectivity and excellent functional group compatibility. Theoretical studies based on density functional theory calculations to understand the reaction mechanisms have also been described. Advances in this novel borylation chemistry will allow the rapid and efficient synthesis of complex molecules with potentially interesting properties in combination with the boron functionalization process.
Many books are available that detail the basic principles of the different methods of surface characterization. On the other hand, the scientific literature provides a resource of how individual pieces of research are conducted by particular labo- tories. Between these two extremes the literature is thin but it is here that the present volume comfortably sits. Both the newcomer and the more mature scientist will find in these chapters a wealth of detail as well as advice and general guidance of the principal phenomena relevant to the study of real samples. In the analysis of samples, practical analysts have fairly simple models of how everything works. Superimposed on this ideal world is an understanding of how the parameters of the measurement method, the instrumentation, and the char- teristics of the sample distort this ideal world into something less precise, less controlled, and less understood. The guidance given in these chapters allows the scientist to understand how to obtain the most precise and understood measu- ments that are currently possible and, where there are inevitable problems, to have clear guidance as the extent of the problem and its likely behavior.
Density functional theory (DFT) is by now a well-established method for tackling the quantum mechanics of many-body systems. Originally applied to compute properties of atoms and simple molecules, DFT has quickly become a work horse for more complex applications in the chemical and materials sciences. The present set of lectures, spanning the whole range from basic principles to relativistic and time-dependent extensions of the theory, is the ideal introduction for graduate students or nonspecialist researchers wishing to familiarize themselves with both the basic and most advanced techniques in this field.
Advances in Quantum Chemistry presents surveys of current
developments in this rapidly developing field that falls between
the historically established areas of mathematics, physics,
chemistry, and biology. With invited reviews written by leading
international researchers, each presenting new results, it provides
a single vehicle for following progress in this interdisciplinary
area.
With the recent advent of nanotechnology, research and development in the area of nanostructured catalysts has gained unprecedented prominence. Novel materials with potentially exciting new applications in catalysis are being discovered at a much higher rate than ever before. Innovative tools to fabricate, manipulate, characterize, and evaluate such materials are being developed and expanded. To keep pace with this extremely rapid growth, it is necessary to take a breath from time to time, to critically assess the current knowledge and provide thoughts for future developments. This book represents one of these moments, as a number of prominent scientists in nanostructured catalysts join forces to provide insightful reviews of their areas of expertise; thus, offering an overall picture of the state-of-the art of the field. Nanostructured materials designate an increasing number of materials with designed shapes, surfaces, structures, pore systems, etc. In general, nanostructured catalysts have modified surfaces, including materials whose surfaces have been altered via such techniques as grafting and tethering of organic or organometallic species, or through various deposition procedures including electro, electroless, and vapor deposition, or simple adsorption. Materials with designed regular pore systems, such as zeolites, metallophosphates, periodic mesoporous materials, nanoporous organic, and organometallic materials are also members of the large family of nanostructured materials. These materials are of paramount importance, particularly in catalysis. One of the most distinctive characteristics of this book is the fact that it is all-inclusive, since most of the materialslisted above have been dealt with in a concise and informative manner. With fourteen up-to-date reports on the design, synthesis, and catalytic properties of nanostructured materials, this book sets the stage for things to come in this area. The development of novel catalysts, taking advantage of the many interesting attributes of periodic nanoporous materials, and the discovery of innovative materials, such as polymer- silica nanocomposites and confined nanoparticles, are some of the leading ideas for future work in the increasingly important field of nanostructured catalysts.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.com
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This text examines in detail mathematical and physical modeling, computational methods and systems for obtaining and analyzing biological structures, using pioneering research cases as examples. As such, it emphasizes programming and problem-solving skills. It provides information on structure bioinformatics at various levels, with individual chapters covering introductory to advanced aspects, from fundamental methods and guidelines on acquiring and analyzing genomics and proteomics sequences, the structures of protein, DNA and RNA, to the basics of physical simulations and methods for conformation searches. This book will be of immense value to researchers and students in the fields of bioinformatics, computational biology and chemistry. Dr. Dongqing Wei is a Professor at the Department of Bioinformatics and Biostatistics, College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China. His research interest is in the general area of structural bioinformatics.
The book considers the main growth-related phenomena occurring
during epitaxial growth, such as thermal etching, doping,
segregation of the main elements and impurities, coexistence of
several phases at the crystal surface and segregation-enhanced
diffusion.
Come on a journey into the heart of matter,and enjoy the process!,as a brilliant scientist and entertaining tour guide takes you on a fascinating voyage through the Periodic Kingdom, the world of the elements. The periodic table, your map for this trip, is the most important concept in chemistry. It hangs in classrooms and labs throughout the world, providing support for students, suggesting new avenues of research for professionals, succinctly organizing the whole of chemistry. The one hundred or so elements listed in the table make up everything in the universe, from microscopic organisms to distant planets. Just how does the periodic table help us make sense of the world around us? Using vivid imagery, ingenious analogies, and liberal doses of humour P. W. Atkins answers this question. He shows us that the Periodic Kingdom is a systematic place. Detailing the geography, history and governing institutions of this imaginary landscape, he demonstrates how physical similarities can point to deeper affinities, and how the location of an element can be used to predict its properties. Here's an opportunity to discover a rich kingdom of the imagination kingdom of which our own world is a manifestation.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers.
Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field that falls between the historically established areas of mathematics, physics, chemistry, and biology. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area.
In this timely volume, scientists examine examine the physical, structural, and analytical chemistry of fuel combustion. Their contributions also address the issue of combustion efficiency and how air quality can be protected or improved. Supported by numerous illustrations, this volume be appreciated by researchers and students working in various areas of chemistry.
This book is designed to serve as a textbook for core courses offered to postgraduate students enrolled in chemistry. This book can also be used as a core or supplementary text for nuclear chemistry courses offered to students of chemical engineering. The book covers various topics of nuclear chemistry like Shell model, fission/fusion reaction, natural radioactive equilibrium series, nuclear reactions carried by various types of accelerators. In addition, it describes the law of decay of radioactivity, type of decay, and interaction of radiation with matter. It explains the difference between ionization counter, scintillation counter and solid state detector. This book also consists of end-of-book problems to help readers aid self-learning. The detailed coverage and pedagogical tools make this an ideal textbook for postgraduate students and researchers enrolled in various chemistry and engineering courses. This book will also be beneficial for industry professionals in the allied fields.
This comprehensive book covers flexible fiber-shaped devices in the area of energy conversion and storage. The first part of the book introduces recently developed materials, particularly, various nanomaterials and composite materials based on nanostructured carbon such as carbon nanotubes and graphene, metals and polymers for the construction of fiber electrodes. The second part of the book focuses on two typical twisted and coaxial architectures of fiber-shaped devices for energy conversion and storage. The emphasis is placed on dye-sensitized solar cells, polymer solar cells, lithium-ion batteries, electrochemical capacitors and integrated devices. The future development and challenges of these novel and promising fiber-shaped devices are summarized in the final part. This book is the first to introduce fiber-shaped electronic devices, which offer many fascinating advantages compared with the conventional planar structure. It is particularly designed to review the state-of-art developments in fiber-shaped devices for energy conversion and storage. The book will provide a valuable resource for researchers and students working in a wide variety of fields such as advanced materials, new energy, electrochemistry, applied physics, nanoscience and nanotechnology, and polymer science and engineering. Huisheng Peng, PhD, is a Professor and Associate Chair of the Department of Macromolecular Science and PI of the Laboratory of Advanced Materials, Fudan University, Shanghai, China.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors.
To the eyes of a chemist, carbon is certainly one of the most fascinating elements of the periodic table. Basically, the electronic structure and atomic size of carbon enables this element to form a variety of bonds with other elements and, most importantly, with other carbon atoms as weIl. These unique features lead to the amazingly complicated molecular structures we encounter e. g. in life sciences and organic chemistry. Of course, the technical importance of carbon is enormou- but I don't want to carry too many coals to Newcastle. Prom the viewpoint of an astrophysicist or chemist, the significance of carbon lies in the fact that it is the most abundant condensable element in space. Born in the interior of stars, and from there expelled into the interstellar medium, it initiates the formation of simple and complex molecules and of nanoscopic grains. These in turn form huge clouds in space - the birthplace of new stars and planetary systems. The decisive role of carbon in interstellar chemistry is widely accepted and the search for more and more families of interstellar carbon-bearing molecules is a topic of ongoing research. The interdisciplinary aspect of carbon also concerns its various solid forms, in which C and the other closed-cage fullerenes are certainly some of the most popular 60 newcomers.
Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide, by Donald J. Darensbourg.- Material Properties of Poly(Propylene Carbonates), by Gerrit. A. Luinstra and Endres Borchardt.- Poly(3-Hydroxybutyrate) from Carbon Monoxide, by Robert Reichardt and Bernhard Rieger. - Ecoflex(r) and Ecovio(r): Biodegradable, Performance-Enabling Plastics, by K. O. Siegenthaler, A. Kunkel, G. Skupin and M. Yamamoto.- Biodegradability of Poly(Vinyl Acetate) and Related Polymers, by Manfred Amann and Oliver Minge.- Recent Developments in Ring-Opening Polymerization of Lactones, by P. Lecomte and C. Jerome.- Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide), by Saikat Dutta, Wen-Chou Hung, Bor-Hunn Huang and Chu-Chieh Lin.- Bionolle (Polybutylenesuccinate), by Yasushi Ichikawa, Tatsuya Mizukoshi.- Polyurethanes from Renewable Resources, by David A. Babb.-"
This multi-authored book provides a comprehensive overview of the latest developments in porous CO2 capture materials, including ionic liquid derived carbonaceous adsorbents, porous carbons, metal-organic frameworks, porous aromatic frameworks, micro porous organic polymers. It also reviews the sorption techniques such as cyclic uptake and desorption reactions and membrane separations. In each category, the design and fabrication, the comprehensive characterization, the evaluation of CO2 sorption/separation and the sorption/degradation mechanism are highlighted. In addition, the advantages and remaining challenges as well as future perspectives for each porous material are covered. This book is aimed at scientists and graduate students in such fields as separation, carbon, polymer, chemistry, material science and technology, who will use and appreciate this information source in their research. Other specialists may consult specific chapters to find the latest, authoritative reviews. Dr. An-Hui Lu is a Professor at the State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, China. Dr. Sheng Dai is a Corporate Fellow and Group Leader in the Chemical Sciences Division at Oak Ridge National Laboratory (ORNL) and a Professor of Chemistry at the University of Tennessee, USA."
"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. Authored by renowned experts, the contributions to this handbook-like series are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 is treating fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion, i.e. phenomena of basic importance, especially with respect to separation processes and catalysis. Various methods of measuring adsorption and diffusion are described and discussed, i.e. techniques such as chromatographic, gravimetric and barometric uptake and desorption, nuclear magnetic resonance, infrared spectroscopy, interference microscopy, neutron scattering, frequency response as well as proton profiling.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. |
You may like...
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
Wits University At 100 - From Excavation…
Wits Communications
Paperback
|