![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry
This book emphasises those features in solution chemistry which are difficult to measure, but essential for the understanding of both the qualitative and the quantitative aspects. Attention is paid to the mutual influences between solute and solvent, even at extremely small concentrations of the former. The described extension of the molecular concept leads to a broad view - not by a change in paradigm - but by finding the rules for the organizations both at the molecular and the supermolecular level of liquid and solid solutions.
"Linear-Scaling Techniques in Computational Chemistry and Physics" summarizes recent progresses in linear-scaling techniques and their applications in chemistry and physics. In order to meet the needs of a broad community of chemists and physicists, the book focuses on recent advances that extended the scope of possible exploitations of the theory. The first chapter provides an overview of the present state of the linear-scaling methodologies and their applications, outlining hot topics in this field, and pointing to expected developments in the near future. This general introduction is then followed by several review chapters written by experts who substantially contributed to recent developments in this field. The purpose of this book is to review, in a systematic manner, recent developments in linear-scaling methods and their applications in computational chemistry and physics. Great emphasis is put on the theoretical aspects of linear-scaling methods. This book serves as a handbook for theoreticians, who are involved in the development of new efficient computational methods as well as for scientists, who are using the tools of computational chemistry and physics in their research.
Comprehensive manual embracing essentially all the classical and
modern areas of chemical kinetics. Provides details of modern
applications in chemistry, technology and biochemistry.
Recognized experts present incisive analyses of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics in Number 35 include: Impedance spectroscopy with specific applications to electrode processes involving hydrogen; Fundamentals and contemporary applications of electroless metal deposition; The development of computational electrochemistry and its application to electrochemical kinetics; Analysis of electrolyte solutions at high concentrations; Applications of the Born theory to solvent polarization by ions and its extensions to treatment of kinetics of ionic reactions. GBP/LISTGBP
This book presents recent research on Advanced Computing in Industrial Mathematics, which is one of the most prominent interdisciplinary areas, bringing together mathematics, computer science, scientific computations, engineering, physics, chemistry, medicine, etc. Further, the book presents the major tools used in Industrial Mathematics, which are based on mathematical models, and the corresponding computer codes, which are used to perform virtual experiments to obtain new data or to better understand previous experimental findings. The book gathers the peer-reviewed papers presented at the 11th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM), from December 20 to 22, 2016 in Sofia, Bulgaria.
'A comprehensive review of the current state of the theoretical development in this important area of potential application of conducting polymers, and is very timely...The editor-author is to be congratulated for his marathon efforts and the production of a significant contribution to the literature.' -TRIP This three-part series provides undergraduate and graduate students in electrochemistry and materials science with a broad understanding of electroactive polymers. In Part I, renowned scientists examine the fundamental principles underlying electrochemical behavior of electroactive polymer materials. Contributors focus on the fundamentals of charge percolation and conductivity behavior associated with the membrane properties of electroactive polymer films. Part I also includes coverage of the phenomenon of heterogeneous redox catalysis at electroactive polymer modified electrodes.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
The theoretical basis of this book is developed ab ovo. This requires dealing with several problems arising in physical chemistry including the concept of entropy as a thermodynamic coordinate and its relation to probability. Thus Maxwell Boltzmann and Gibbs statistical thermodynamics, and quantum statistics are made considerable use of. A statistical mechanical derivation of the law of mass action for gases and solids is presented, and the problems arising in the application of the law of mass action to the liquid state are addressed. Molecular interactions and how to take them into account when deriving the law of mass action is discussed in some detail sketching a way alternativ to the use of activities. Finally, attention is drawn to the statistical mechanical background to Linear Free Energy Relationships (LFER's) and of Isokinetic Relationships (IKR's) and their connections with molecular interactions.
The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on isobaric binary systems. The fourth section gives an account of the thermodynamic analyses of four isobaric binary key systems, highlighting the power of empirical, (exo)thermodynamic correlations. The fifth section is devoted to the thermodynamic description of ternary systems. The last three sections concentrate on the properties of materials, and the phase behaviour of systems under the conditions of high temperature and high pressure conditions that prevail in the interior of the Earth. A new equation of state is the subject of the sixth section. In the seventh section a move is made to statistical thermodynamics and vibrational models; the description of the systems has changed from mathematical to physical. The last section is on the system MgO SiO2, looked upon from a geophysical point of view. Throughout the work high priority is given to the thermodynamic assessment of experimental data; numerous end-of-section exercises and their solutions are included. Along with the First Volume, the work is useful for materials scientists and geophysicists as a reference text. Audience Volume II is a lecture book for postgraduate students in chemistry, chemical engineering, geology and metallurgy. It is highly useful as a recommended text for teachers and researchers in all fields of materials science. "
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
The periodic table is one of the most potent icons in science. It
lies at the core of chemistry and embodies the most fundamental
principles of the field. The one definitive text on the development
of the periodic table by van Spronsen (1969), has been out of print
for a considerable time. The present book provides a successor to
van Spronsen, but goes further in giving an evaluation of the
extent to which modern physics has, or has not, explained the
periodic system. The book is written in a lively style to appeal to
experts and interested lay-persons alike.
Through this monograph, the pharmaceutical chemist gets familiar with the possibilities electroanalytical methods offer for validated analyses of drug compounds and pharmaceuticals. The presentation focuses on the techniques most frequently used in practical applications, particularly voltammetry and polarography. The authors present the information in such a way that the reader can judge whether the application of such techniques offers advantages for solving a particular analytical problem. Basics of individual electroanalytical techniques are outlined using as simple language as possible, with a minimum of mathematical apparatus. For each electroanalytical technique, the physical and chemical processes as well as the instrumentation are described. The authors also cover procedures for the identification of electroactive groups and the chemical and electrochemical processes involved. Understanding the principles of such processes is essential for finding optimum analytical conditions in the most reliable way. Added to this is the validation of such analytical procedures. A particularly valuable feature of this book are extensive tables listing numerous validated examples of practical applications. Various Indices according to the drug type, the electroactive group and the type of method as well as a subject and author index are also provided for easy reference.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This and its companion Volumes 2 and 3 document the proceed- ings of the 4th International Symposium on Surfactants in Solution held in Lund, Sweden, June 27-July 2, 1982. This biennial event was christened as the 4th Symposium as this was a continuation of ear- li er conferences dealing with surfactants held in 1976 (Albany) under the title "Micellization, Solubilization, and Microemulsions"; in 1978 (Knoxville) under the title "Solution Chemistry of Surfac- tants"; and in 1980 (Potsdam) where it was dubbed as "Solution Be- bavior of Surfactants: Theoretical and Applied Aspects:' The Pl02 3 ceedings of all these symposia have been properly chronicled. ' , The Lund Symposium was bi lIed as "Surfactants in Solution" as both the aggregation and adsorption aspects of surfactants were covered, and furthermore we were interested in a general title which could be used for future conferences in this series. As these biennial events bave become a weIl recognized forum for bringing together researchers with varied interests in the arena of surfactants, so it is amply vindicated to continue these, and the next meeting is planned for July 9-13, 1984 in Bordeaux, France under the cochair- manship of K. L. Mittal and P. Bothorel. The venue for 1986 is still open, although India, inter alia, is a good possibility. Apropos, we would be delighted to entertain suggestions regarding where and when these biennial symposia should be held in the future and you may direct your response to Kk~.
"Blurb & Contents" This collection of articles covers the "quiet revolution" that took place in quantum optics in the 1980s. Explores far-reaching repercussions in methods of light field generation, propagation, and detection in the quantum rather than in the classical regime. Throughout, theory is discussed with supporting experimental data. Newcomers and experienced researchers will find this a useful introduction and an excellent reference. Contents: Introduction. The early years. Photon antibunching and sub- Poissonian photon statistics. Squeezed states of light. Quantum non- demolition. Quantum effects in photon interference. Cavity quantum electrodynamics. Quantum noise reduction in lasers.
This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.
The 2003 International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials" was held in September 2003. In the tradition of the earlier ICHMS conferences, this meeting served as an interdisciplinary forum for the presentation and discussion of the most recent research on transition to hydrogen-based energy systems, technologies for hydrogen production, storage, utilization, materials, energy and environmental problems. The aim of the volume is to provide an overview of the latest scientific results on research and development in the different topics cited above. The representatives from industry, public laboratories, universities and governmental agencies have presented the most recent advances in hydrogen concepts, processes and systems, to evaluate current progress in these areas of investigations and to identify promising research directions for the future.
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are:
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are:
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
The so-called reaction path (RP) with respect to the potential energy or the Gibbs energy ("free enthalpy") is one of the most fundamental concepts in chemistry. It significantly helps to display and visualize the results of the complex microscopic processes forming a chemical reaction. This concept is an implicit component of conventional transition state theory (TST). The model of the reaction path and the TST form a qualitative framework which provides chemists with a better understanding of chemical reactions and stirs their imagination. However, an exact calculation of the RP and its neighbourhood becomes important when the RP is used as a tool for a detailed exploring of reaction mechanisms and particularly when it is used as a basis for reaction rate theories above and beyond TST. The RP is a theoretical instrument that now forms the "theoretical heart" of "direct dynamics." It is particularly useful for the interpretation of reactions in common chemical systems. A suitable definition of the RP of potential energy surfaces is necessary to ensure that the reaction theories based on it will possess sufficiently high quality. Thus, we have to consider three important fields of research: - Analysis of potential energy surfaces and the definition and best calculation of the RPs or - at least - of a number of selected and chemically interesting points on it. - The further development of concrete vers ions of reaction theory beyond TST which are applicable for common chemical systems using the RP concept.
There exists a large literature on the spectroscopic properties of copper(II) com- 9 pounds. This is due to the simplicity of the d electron configuration, the wide variety of stereochemistries that copper(II) compounds can adopt, and the f- xional geometric behavior that they sometimes exhibit [1]. The electronic and geometric properties of a molecule are inexorably linked and this is especially true with six-coordinate copper(II) compounds which are subject to a Jahn-T- ler effect.However,the spectral-structural correlations that are sometimes d- wn must often be viewed with caution as the information contained in a typical solution UV-Vis absorption spectrum of a copper(II) compound is limited. Meaningful spectral-structural correlations can be obtained in a related series of compounds where detailed spectroscopic data is available. In the fol- 4- lowing sections two such series are examined; the six-coordinate CuF and 6 2+ Cu(H O) ions doped as impurities in single crystal hosts.Using low tempera- 2 6 ture polarized optical spectroscopy and electron paramagnetic resonance, a very detailed picture can be drawn about the geometry of these ions in both their ground and excited electronic states. We then compare the spectrosco- cally determined structural data with that obtained from X-ray diffraction or EXAFS measurements. |
You may like...
On a True Parthenogenesis in Moths and…
Carl Theodor Ernst Von Siebold
Paperback
R378
Discovery Miles 3 780
Cartilage and Osteoarthritis
Massimo Sabatini, Philippe Pastoureau, …
Hardcover
R4,074
Discovery Miles 40 740
The Conservative Press in…
Ronald Lora, William Henry Longton
Hardcover
R2,384
Discovery Miles 23 840
Social Web Evolution - Integrating…
Miltiadis D Lytras, Patricia Ordonez De Pablos
Hardcover
R4,935
Discovery Miles 49 350
|