![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes, by A. Jaramillo-Botero, R. Nielsen, R. Abrol, J. Su, T. Pascal, J. Mueller and W. A. Goddard.- Dynamic QM/MM: A Hybrid Approach to Simulating Gas Liquid Interactions, by S. Yockel and G. C. Schatz.- Multiscale Modelling in Computational Heterogeneous Catalysis, by F. J. Keil.- Real-World Predictions from Ab Initio Molecular Dynamics Simulations, by B. Kirchner, P. J. di Dio and J. Hutter.- Nanoscale Wetting Under Electric Field from Molecular Simulations, by C. D. Daub, D. Bratko and A. Luzar.- Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales, by J. L. Rafferty, J. I. Siepmann, M. R. Schure.- Thermodynamic Properties for Applications in Chemical Industry via Classical Force Fields, by G. Guevara-Carrion, H. Hasse and J. Vrabec.- Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes, by L. Delle Site, C. Holm and N. F. A. van der Vegt.- Coarse-Grained Modeling for Macromolecular Chemistry, by H. A. Karimi-Varzaneh and F. Muller-Plathe.-"
Studies in Natural Products Chemistry, Volume 10: Stereoselective Synthesis (Part F) is a collection of articles about studies on important organic molecules. The book covers studies such as that on the synthesis of cembranes as well as its natural occurrence and bioactivity; the stereoselective synthesis of Vitamin D; the synthesis of isoquinolinequinone antibiotics; and the nucleophilic addition chemistry of polyunsaturated carbonyl compounds. Also covered in the book are subjects such as developments in the synthesis of medium ring ethers; the biological properties, chemistry, and synthesis of didemnins; and natural products synthesis based on novel ring transformation. The text is recommended for organic chemists who would like to know more about the progresses in the study of important organic molecules and their implications in different fields.
In this book well-known experts highlight cutting-edge research priorities and discuss the state of the art in the field of solid oxide fuel cells giving an update on specific subjects such as protonic conductors, interconnects, electrocatalytic and catalytic processes and modelling approaches.Fundamentals and advances in this field are illustrated to help young researchers address issues in the characterization of materials and in the analysis of processes, not often tackled in scholarly books.
This volume of Modern Aspects of Electrochemistry reviews the latest developments in electrochemical science and technology related to biomedical and pharmaceutical applications. In particular, this book discusses electrochemical applications to medical devices, implants, antimicrobially active materials, and drug delivery systems.
This volume is meant as an introductory resource aimed at practitioners of electrochemistry research, technology and development mainly at the atomic, molecular or macromolecular levels. Emphasis is placed at length scales in the 1-100 nm range. The aim of the volume is to help provide understanding of electrochemical phenomena and materials at the nanoscale through modeling and numeric simulations. It is also designed to serve as a means to create and use structures.
In this thesis, the author outlines the construction of active structure and modulation of catalytic reactivity of Pt-based bi-component catalysts, from the model systems to real supported catalysts. The thesis investigates the promotion effect of the second components on catalytic performance of Pt catalysts, and presents the reversible generation of the "sandwich-like" structure of Pt-Ni catalysts, containing both surface NiO1-X and subsurface Ni by alternating redox treatments at medium temperature. With the aid of single layer graphene, the dynamic process of chemical reactions occurring on the Pt(111) surface can be visualized using in-situ LEEM and DUV-PEEM techniques, the results of which are included here. The author reveals that the graphene layer exhibits a strong confinement effect on the chemistry of molecules underneath and the intercalated CO can desorb from the Pt surface around room temperature and in UHV, which may promote the CO oxidation confined under graphene.
This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed. The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schroedinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.
-Encapsulation by Miniemulsion Polymerization By K. Landfester and C. K. Weiss -Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices By K. Ariga, Q. Ji, and J. P. Hill -Non-LBL Assembly and Encapsulation Uses 1 of Nanoparticle-Shelled Hollow Spheres 2 By G.C. Kini, S. L. Biswal, and M. S. Wong -Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery By M. Massignani, H. Lomas, and G. Battaglia -Reaction Vessels Assembled by the Sequential Adsorption of Polymers By A.D. Price, A.P.R. Johnston, G.K. Such, and F. Caruso
The Role of Metals and Ligands in Organic Hydroformylation, by Luca Gonsalvi, Antonella Guerriero, Eric Monflier, Frederic Hapiot, Maurizio Peruzzini. Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors, by Frederic Hapiot, Herve Bricout, Sebastien Tilloy, Eric Monflier. Asymmetric Hydroformylation, by Bernabe F. Perandones, Cyril Godard, Carmen Claver. Domino Reactions Triggered by Hydroformylation, by Elena Petricci, Elena Cini. Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis, by Roberta Settambolo. Hydroformylation in Natural Product Synthesis, by Roderick W. Bates, Sivarajan Kasinathan."
This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles oftuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the user."
Control over macromolecular architecture and resulting material properties has been a central goal of polymer chemistry. There has been much interest in developing new synthetic routes to prepare smart materials with novel compositions and topologies for various applications. The considerable progress in the metal mediated macromolecular engineering over the past decade has had a major impact on the development of well-defined macromolecular architectures and the synthesis of smart materials. Particularly, remarkable strong developments have been observed for the synthesis of smart materials via four metal mediated macromolecular engineering techniques; Anionic, ROMP, ATRP and Click Chemistry. These materials have found uses in advanced microelectronics, technical and biomedical applications as well as in chemical sensors applications. This book is comprised of 27 chapters written by leading scientists from NATO and Partner Countries who have greatly contributed in the area of Anionic, ROMP, ATRP and Click Chemistry. It highlights the fundamental aspects and recent developments of these four powerful techniques and evaluate their potential in the syntheses of smart materials from complex structures (grafts, brushes, dendrimers, etc.) to nanostructures (self-assembly, nano-size, etc) for a wide range of applications. The book reports on the synthesis of a wide range of well-defined complex polymeric systems such as thermoresponsive smart polymers, star copolymers, biocompatible polymers, amphipilic smart nano structured, conducting polymers, self assembled polymers, and hyperbranced polymers.
The second edition of this textbook includes refined text in each chapter, new sections on corrosion of steel-reinforced concrete and on cathodic protection of steel reinforced bars embedded in concrete, and some new solved examples. The book introduces mathematical and engineering approximation schemes for describing the thermodynamics and kinetics of electrochemical systems, which are the essence of corrosion science, in addition to electrochemical corrosion, forms of corrosion and mechanisms of corrosion. This approach should capture the reader's attention on the complexity of corrosion. Thus, the principles of electrochemistry and electrochemical cells are subsequently characterized in simple electrolytes from a thermodynamics point of view.
This book presents an overview of recent advances in our understanding of the genesis of diamonds and the associated phases. It is divided into three main parts, starting with an introduction to the analysis of diamond inclusions to infer the formation processes. In turn, the second part of the book presents high-pressure experimental studies in mantle diamond-parental mineral systems with representative multicomponent boundary compositions. The experimental syngenesis phase diagrams provided reveal the physicochemical mechanisms of diamond nucleation and substantiate the mantle-carbonatite concept of the genesis of diamonds and associated phases. Lastly, the book describes the genetic classification of diamond-hosted mineral inclusions and experimentally determined RE "mineral-parental melt" partition coefficients. The physicochemical experimental evidence presented shows the driving forces behind the fractional evolution of the mantle magmas and diamond-parental melts. Given the depth and breadth of its coverage, the book offers researchers essential new insights into the ways diamonds and associated minerals and rocks are naturally created.
This book is a beginners introduction to chemical thermodynamics
for engineers.
In this volume expert researchers in the field detail the operations of microchip capillary electrophoresis. Chapters focus on small molecule, biomolecule applications, various detection modes, and sample preparation approaches are described. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microchip Capillary Electrophoresis Protocol aids scientists in continuing to study microchip capillary electrophoresis.
Ionic Surfactants and Aqueous Solutions: Biomolecules, Metals and Nanoparticles covers a wide range of subjects related to aqueous systems, from reverse micelles as ion exchangers to the study of micellar phase transfer catalysis for nucleophilic substitution reactions. The diverse background, expertise and professional interests of the contributors to this book give to it a unique richness of approach in topics of relevance for biotechnology and environmental studies. Over sixty publications presenting research results are combined and expanded in this book by some of the original researchers. At a mature age, and at the summit of successful professional careers, they have taken a second look to the state of the art in the fields that they had pioneered. Eva Rodil and Ana Soto, who had their research formation in the group of Professor Alberto Arce at Universidade de Santiago de Compostela, Spain, are presently professors at that university, Maen Husein is a professor at University of Calgary, Canada. Remy Dumortier, Mohammad Khoshkbarchi, Hamid Rabie and Younok Dumortier Shin, are presently active leaders in the industrial world in Canada and the USA. The editors are retired academics from McGill University, Montreal, Canada, and coauthors of the book Classical Thermodynamics of Fluid Systems.
Fluorine chemistry is an expanding area of research that is attracting international interest, due to the impact of fluorine in drug discovery and in clinical and molecular imaging (e.g. PET, MRI). Many researchers and academics are entering this area of research, while scientists in industrial and clinical environments are also indirectly exposed to fluorine chemistry through the use of fluorinated compounds for imaging.This book provides an overview of the impact that fluorine has made in the life sciences. In the first section, the emphasis is on how fluorine substitution of amino acids, peptides, nucleobases and carbohydrates can provide invaluable information at a molecular level. The following chapters provide answers to the key questions posed on the importance of fluorine in drug discovery and clinical applications. For examples, the reader will discover how fluorine has found its place as a key element improving drug efficacy, with reference to some of the best-selling drugs on the market. Finally, a thorough review on the design, synthesis and use of 18F-radiotracers for positron emission tomography is provided, and this is complemented with a discussion on how 19F NMR has advanced molecular and clinical imaging.
Using an in situ transmission electron microscopy (TEM) approach to investigate the growth mechanism of carbon nanotubes (CNTs) as well as the fabrication and properties of CNT-clamped metal atomic chains (MACs) is the focus of the research summarized in this thesis. The application of an in situ TEM approach in the above-mentioned research provides not only real-time observation but also monitored machining and structural evolvement at the atomic level. In this thesis, the author introduces a CNT tubular nano furnace that can be operated under TEM for investigation of the CNT nucleation mechanism. By studying the nucleation process of CNTs in the presence of various catalysts, including iron-based metallic catalysts and silicon oxide-based non-metallic catalysts, the physical states of the catalysts as well as the nucleation and growth process of CNTs are revealed. Based on the understanding of the nucleation mechanism, the author proposes a hetero-epitaxial growth strategy of CNTs from boron nitride, which provides a new route for the controllable growth of CNTs. In addition, the author presents an electron beam-assisted nanomachining technique and the fabrication of a CNT-clamped MAC prototype device based on this technique. The formation process of CNT-clamped Fe atomic chains (ACs) can be monitored with atomic resolution. The demonstrated quantized conductance and uninfluenced half-metallic properties of Fe ACs indicate that CNTs can be promising nanoscale electrodes or interconnectors for the linking and assembly of nano and subnano structures.
This corrected and expanded printing of Thin Films on Glass describes the development of active and passive thin films on glass at Schott, including recent developments and new technologies in glass ceramic reflectors, coatings on plastics and optical multilayers for ultra narrow band pass filters. Design strategies, the use of conventional and newly developed production technologies, and the application of characterization methods for the structure of thin films and their properties are reported. The book is written by Schott experts and illustrates how the best film materials and deposition and processing parameters may be selected. The topics covered include flip-flop layers, wave-guiding films, Rugate filters and gradient devices, optical transducers, coatings, and mirrors.
This book starts with the most elementary ideas of molecular orbital theory and leads the reader progressively to an understanding of the electronic structure, geometry and, in some cases, reactivity of transition metal complexes. The qualitative orbital approach, based on simple notions such as symmetry, overlap and electronegativity, is the focus of the presentation and a substantial part of the book is associated with the mechanics of the assembly of molecular orbital diagrams. The first chapter recalls the basis for electron counting in transition metal complexes. The main ligand fields (octahedral, square planar, tetrahedral, etc.) are studied in the second chapter (sigma interactions) and the structure of the "d block" is used to trace the relationships between the electronic structure and the geometry of the complexes. The third chapter studies the change in analysis when the ligands have pi-type interactions with the metal. All these ideas are then used in the fourth chapter to study a series of selected applications of varying complexity (structure, reactivity). The fifth chapter deals with the "isolobal analogy" which points out the resemblance between the molecular orbitals of inorganic and organic species and provides a bridge between these two subfields of chemistry. The last chapter is devoted to a presentation of basic Group Theory with applications to some of the complexes studied in the earlier chapters.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
This book reviews some of the latest developments in the field of water treatment using multi-functional chitosan-based materials. It covers the production of chitosan beads and membranes from chitosan powder, as well as modification techniques for enhancing the material for commercial and industrial purposes. The book summarizes the results of experimental adsorption/desorption studies for elucidating the underlying reaction mechanism of heavy-metal removal from wastewater, presenting an advanced overview of an array of characterization techniques such as Fourier-transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction, and scanning electron microscopy. Additionally, it features a look at the development and application of specialized engineering software and image analysis for modelling the kinetics of adsorption. This book is ideal for scientists and engineers working in the broader field of environmental materials science. It is all well suited for chemists, as well as industrial and civil engineers, interested in wastewater treatment and mitigation of water pollution
This book addresses the most important aspects of solid state physics, reviewing basic properties, related experimental techniques, and summarizing research over six decades. In addition, Micro- and Macro-Properties of Solids provides data on new materials such as rare-earth metals, semiconductors, ferroelectrics, mixed-valence compounds, superionic conductors, optical and optoelectronic materials and biomaterials. |
![]() ![]() You may like...
Super Thinking - Upgrade Your Reasoning…
Gabriel Weinberg, Lauren McCann
Paperback
![]()
Eastern Christian Approaches to…
James Siemens, Joshua Matthan Brown
Hardcover
R3,144
Discovery Miles 31 440
Black Like You - An Autobiography
Herman Mashaba, Isabella Morris
Paperback
![]()
Digital Classics Outside the…
Gabriel Bodard, Matteo Romanello
Hardcover
R1,177
Discovery Miles 11 770
|