![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
This volume summarises recent developments and highlights new techniques which will define possible future directions for small molecule X-ray crystallography. It provides an insight into how specific aspects of crystallography are developing and shows how they may interact or integrate with other areas of science. The development of more sophisticated equipment and the massive rise in computing power has made it possible to solve the three-dimensional structure of an organic molecule within hours if not minutes. This successful trajectory has resulted in the ability to study ever more complex molecules and use smaller and smaller crystals. The structural parameters for over a million organic and organometallic compounds are now archived in the most commonly used database and this wealth of information creates a new set of problems for future generations of scientists. The volume provides some insight into how users of crystallographic structural data banks can navigate their way through a world where "big data" has become the norm. The coupling of crystallography to quantum chemical calculations provides detailed information about electron distributions in crystals affording a much more detailed analysis of bonding than has been possible previously. In quantum crystallography, quantum mechanical wavefunctions are used to extract information about bonding and properties from the measured X-ray structure factors. The advent of quantum crystallography has resulted in form and structure factors derived from quantum mechanics which have been used in advanced refinement and wavefunction fitting. This volume describes how quantum mechanically derived atomic form factors and structure factors are constructed to allow the improved description of the diffraction experiment. It further discusses recent developments in this field and illustrates their applications with a wide range of examples. This volume will be of interest to chemists and crystallographers with an interest in the synthesis, characterisation and physical and catalytic properties of solid-state materials. It will also be relevant for the community of computational chemists who study chemical systems. Postgraduate students entering the field will benefit from a historical introduction to the way in which scientists have used the data derived from crystallography to develop new structural and bonding models.
The first unified treatment of experimental and theoretical
advances in low-temperature chemistry Chemical Dynamics at Low
Temperatures is a landmark publication. For the first time, the
cumulative results of twenty years of experimental and theoretical
research into low-temperature chemistry have been collected and
presented in a unified treatment. The result is a text/reference
that both offers an overview of the subject and contains sufficient
detail to guide practicing researchers toward fertile ground for
future research. Topics covered include:
The first part of this book looks at the consequence of chemical and topological defects existing on real surfaces, which explain the wettability of super hydrophilc and super hydrophobic surfaces. There follows an in-depth analysis of the acido-basicity of surfaces with, as an illustration, different wettability experiments on real materials. The next chapter deals with various techniques enabling the measurement of acido basicity of the surfaces including IR and XPS technics. The last part of the book presents an electrochemical point of view which explains the surface charges of the oxide at contact with water or other electrolyte solutions in the frame of Bronsted acido-basicity concept. Various consequences are deduced from such analyses illustrated by original measurement of the point of zero charge or by understanding the basic principles of the electrowetting experiments.
Lacquer Chemistry and Applications explores the topic of lacquer, the only natural product polymerized by an enzyme that has been used for a coating material in Asian countries for thousands of years. Although the human-lacquer-culture, including cultivation of the lacquer tree, harvesting, and the use of lacquer sap, has a long history of more than thousand years, there is very little information available on the modern scientific methods to study lacquer chemistry. This book, based on the results of the authors' 30 years of research on lacquer chemistry, offers lacquer researchers a unique reference on the science and applications of this extremely important material.
This book reports on the successful implementation of an innovative, miniaturized galvanic cell that offers unprecedented control over and access to ionic transport. It represents a milestone in fundamental studies on the diffusive transport of lithium ions between two atomically thin layers of carbon (graphene), a highly relevant aspect in electrodes for energy and mass storage in the context of batteries. Further, it is a beautiful example of how interdisciplinary work that combines expertise from two very distinct fields can significantly advance science. Machinery and tools common in the study of low-dimensional systems in condensed matter physics are combined with methods routinely employed in electrochemistry to enable truly unique and powerful experiments. The method developed here can easily be generalized and extended to other layered materials as well as other ionic species. Not only the method but also the outcome of its application to Li diffusion and intercalation in bilayer graphene is remarkable. A record chemical diffusion coefficient is demonstrated, exceeding even the diffusion of sodium chloride in water and surpassing any reported value of ion diffusion in single-phase mixed conducting materials. This finding may be indicative of the exceptional properties yet to be discovered in nanoscale derivatives of bulk insertion compounds.
Many new developments, related to the interpretation and importance
of symmetry relationships, quantum mechanics, general relativity,
field theory and mathematics have occurred in the second half of
the 20th century without having a visible impact on chemical
thinking. By re-examining basic theories, The New Theories for
Chemistry aims to introduce a new understanding of old concepts,
such as electron spin, The Periodic Table and electronegativity.
The book focuses on the new mathematical concepts that enable the
exploration of interactions between particles, waves and fields
within a chemical context, and is packed with examples to support
its arguments. The author adopts a practical approach and topics
are arranged sequentially, from the mathematical basis through to
general concepts. An essential reference source, this book is
suitable for physicists, theoretical and physical chemists, as well
as students and researchers working in the field.
This thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory.
Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphasis is given to the important role of electrical double layers in colloidal suspension. Written for students, scientists and researchers both in academia and industry and chemical engineers working in the fields of colloid and surface chemistry, biological chemistry, physical chemistry, physics, chemical technology, and polymer technology this book will help them to exploit recent developments recognizing the potential applications of colloid science in enhancing the efficiency of their processes or the quality and range of their products.
Surface Area and Porosity Determinations by Physisorption is a
practical guide for industry or academics to the measurement of
surface area and pore size using the tool of physical adsorption.
Starting with a brief description of what physical adsorption is
and the raw data that is obtained. The instrumentation for
measuring this isotherm is described in some details.
Recommendations are presented as to what instrumentation would be
most appropriate for a particular application. An appendix of
current commercial instruments is included.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
An authoritative review of the state of the art in the Nuclear Overhauser Effect—essential information for organic chemists, biochemists, biophysicists, and NMR spectroscopists The field of NMR spectroscopy has seen tremendous growth in the last twenty years, particularly advances relating to Nuclear Overhauser Effect (NOE) spectroscopy—the most powerful technique for obtaining structural information on molecules in solution. Extensive and engaging, the Second Edition of the leading reference on the NOE is significantly updated to reflect the latest changes and new approaches in the field. Neuhaus and Williamson provide an essential guide to the complexities and use of the NOE in a readily accessible, straightforward manner. Their practical handbook features a new chapter addressing the use of NOE data to calculate biomolecular structures. Chapters dealing with the kinetics of the NOE, the effects of exchange and internal motion, and applications of the NOE, are also extensively revised. Cross-referenced in remarkable depth, The Nuclear Overhauser Effect is organized into three main parts:
This volume describes the application of fluorescence spectroscopy in polymer research. The first chapters outline the basic principles of the conformational and dynamic behavior of polymers and review the problems of polymer self-assembly. Subsequent chapters introduce the theoretical principles of advanced fluorescence methods and typical examples of their application in polymer science. The book closes with several reviews of various fluorescence applications for studying specific aspects of polymer-solution behavior. It is a useful resource for polymer scientists and experts in fluorescence spectroscopy alike, facilitating their communication and cooperation.
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films ("1-dimensional" confinement) (ii) in pores or tubes with nanometric diameters ("2-dimensional" confinement) (iii) as micelles embedded in matrices ("3-dimensional") or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore diameters. ""Dynamics in Confinement"" sums up the present state-of-the-art and introduces to the analytical methods of choice for the study of dynamics in nanometer-scale confinement.
The Elementary Reaction Steps in Heterogeneous Catalysis was studies during the first week in November, 1992, by no fewer than 54 participants, drawn from 11 countries, with both industrial and academic backgrounds. The five sessions reported in the book cover: Catalytic reactivity; Surface science studies in catalysis; In situ methods in catalysis; The contribution of theory to catalytic understanding; and Chemical kinetics and chemical engineering. The book ends with Summary lectures, a list of contributors, and an index.
I. Electron Transfer Reactions.- 1. Electron Transfer: General and Theoretical.- 1.1. Overview and General Aspects of Reactions in Fluid Media.- 1.2. Electronic Coupling (Ke1).- 1.2.1. The Distance Dependence of Electron Transfer Rates.- 1.2.2. Electric and Magnetic Field Effects on Electronic Coupling and Related Problems of Photoinduced Electron Transfer.- 1.3. The Free-Energy Dependence of Electron Transfer Reactions: The "Inverted Region" Problem.- 1.4. The Effects of Solvent Dynamics.- 1.5. Metal-to-Metal and Ligand-to-Ligand Charge Transfer ("Inter-valence" Transfer).- 2. Redox Reactions between Two Metal Complexes.- 2.1. Introduction.- 2.2. Reactions of Metal Aqua and Oxo Ions.- 2.2.1. Titanium.- 2.2.2. Vanadium and Chromium.- 2.2.3. Iron.- 2.2.4. Molybdenum and Tungsten.- 2.3. Reactions of Metal Ion Complexes.- 2.3.1. Chromium.- 2.3.2. Manganese.- 2.3.3. Iron, Ruthenium, and Osmium.- 2.3.4. Cobalt and Rhodium.- 2.3.5. Nickel, Palladium, and Platinum.- 2.3.6. Copper and Silver.- 2.3.7. Technetium and Rhenium.- 2.3.8. Ytterbium.- 2.4. Reactions with Metalloproteins.- 2.4.1. Introduction.- 2.4.2. Copper Proteins.- 2.4.3. Hemoglobin and Myoglobin.- 2.4.4. Cytochromes.- 2.4.5. Iron-Sulfur Proteins.- 3. Metal-Ligand Redox Reactions.- 3.1. Introduction.- 3.2. Oxygen, Peroxide, and Other Oxygen Compounds.- 3.2.1. Dioxygen.- 3.2.2. Hydrogen Peroxide.- 3.2.3. Alkyl Hydroperoxides.- 3.3. Nitrogen Compounds and Oxyanions.- 3.3.1. Hydrazine, Azides, Hydroxylamines, and Derivatives.- 3.3.2. Oxynitrogen Compounds.- 3.3.3. Amines and Nitriles.- 3.4. Sulfur Compounds and Oxyanions.- 3.4.1. Peroxodisulfate and Peroxomonosulfate.- 3.4.2. Sulfur Dioxide and Sulfite Ions.- 3.4.3. Sulfoxides.- 3.4.4. Alkyl Sulfur Compounds.- 3.4.5. Selenium, Tellurium, and Elemental Sulfur.- 3.5. Halogen, Halides, and Halogen Oxyanions.- 3.5.1. Halogens.- 3.5.2. Halides.- 3.5.3. Oxyhalogen Compounds.- 3.6. Phosphorus, Arsenic, and Oxycompounds.- 3.6.1. Phosphorus Oxyanions.- 3.6.2. Phosphines and Arsines.- 3.7. Inorganic Radicals.- 3.8. Ascorbic Acid, Quinols, Catechols, and Diols.- 3.8.1. Ascorbic Acid.- 3.8.2. Aromatic Diols and Diones.- 3.8.3. Aromatic and Aliphatic Alcohols.- 3.9. Carboxylic Acids, Carboxylates, Carbon Dioxide, and Carbon Monoxide.- 3.9.1. Carboxylic Acids and Carboxylates.- 3.9.2. Carbon Dioxide and Carbon Monoxide.- 3.10. Alkyl Halides.- 3.11. Organic Radicals.- II. Substitution and Related Reactions.- 4. Reactions of Compounds of the Nonmetallic Elements.- 4.1. Boron.- 4.2. Carbon.- 4.3. Silicon.- 4.4. Germanium.- 4.5. Nitrogen.- 4.6. Phosphorus.- 4.7. Arsenic.- 4.8. Oxygen.- 4.9. Sulfur.- 4.10. Selenium and Tellurium.- 4.11. Halogens, Krypton, and Xenon.- 4.11.1. Fluorine.- 4.11.2. Chlorine.- 4.11.3. Bromine.- 4.11.4. Iodine.- 4.11.5. Krypton and Xenon.- 4.12. Oscillating Reactions.- 5. Substitution Reactions of Inert-Metal Complexes-Coordination Numbers 4 and 5.- 5.1. Introduction.- 5.2. Associative Ligand Exchange at Square-Planar Platinum(II).- 5.3. Associative Ligand Exchange at Square-Planar Palladium(II).- 5.4. Ligand Exchange at Platinum(II) by Dissociative Processes.- 5.5. Ligand Exchange at Nickel.- 5.6. Reactions of Planar Ir(I), Rh(I), Au(III), and Cu(II) Complexes.- 5.7. Five-Coordinate Species.- 5.8.TransEffect.- 5.9. Isomerizations.- 6. Substitution Reactions of Inert-Metal Complexes-Coordination Numbers 6 and Above: Chromium.- 6.1. Introduction.- 6.2. Aquation and Solvolysis of Chromium(III) Complexes.- 6.2.1. [Cr(III)(L5)X]n+1Systems (L = OH2, NH3).- 6.2.2. Cr(III)-C Bond Rupture.- 6.2.3. Amine and Other Complexes.- 6.2.4. Dechelation/Chelation Processes.- 6.2.5. Metal-Ion-Assisted Aquation.- 6.2.6. Porphyrins.- 6.3. Formation of Chromium(III) Complexes.- 6.3.1. The Nature of the Cr3+Cation in Aqueous Solution.- 6.3.2. Anation Reactions.- 6.4. Base Hydrolysis.- 6.5. Oxidation and Reduction of Cr(III) Complexes.- 6.6. Isomerization and Racemization.- 6.7. Photochemistry and Photophysics of Chromium(III) Complexes.-...
Among the numerous applications of the rare-earth elements, the field of catalysis accounts for a large number. Catalysis represents approximately 20% of the total market sales of rare earths worldwide. As a matter of fact two main applications have been prominent in the last decades: zeolite stabilization for fluid cracking catalysts, and automotive post-combustion catalytic treatment.
The present work focuses on the development of intensified small-scale extraction units for spent nuclear fuel reprocessing using advanced process engineering with combined experimental and modelling methodologies. It discusses a number of novel elements, such as the intensification of spent fuel reprocessing and the use of ionic liquids as green alternatives to organic solvents. The use of ionic liquids in two-phase liquid-liquid separation is new to the Multiphase Flow community, and has proved to be challenging, especially in small channels, because of the surface and interfacial properties involved, which are very different to those of common organic solvents. Numerical studies have been also performed to couple the hydrodynamics at small scale with the mass transfer. The numerical results, taken together with scale-up studies, are used to evaluate the applicability of the small-scale units in reprocessing large volumes of nuclear waste.
This book serves as a self-contained reference source for engineers, materials scientists, and physicists with an interest in relaxation phenomena. It is made accessible to students and those new to the field by the inclusion of both elementary and advanced math techniques, as well as chapter opening summaries that cover relevant background information and enhance the book's pedagogical value. These summaries cover a wide gamut from elementary to advanced topics. The book is divided into three parts. The opening part, on mathematics, presents the core techniques and approaches. Parts II and III then apply the mathematics to electrical relaxation and structural relaxation, respectively. Part II discusses relaxation of polarization at both constant electric field (dielectric relaxation) and constant displacement (conductivity relaxation), topics that are not often discussed together. Part III primarily discusses enthalpy relaxation of amorphous materials within and below the glass transition temperature range. It takes a practical approach inspired by applied mathematics in which detailed rigorous proofs are eschewed in favor of describing practical tools that are useful to scientists and engineers. Derivations are however given when these provide physical insight and/or connections to other material. A self-contained reference on relaxation phenomena Details both the mathematical basis and applications For engineers, materials scientists, and physicists
Chemical Modelling: Applications and Theory comprises critical literature reviews of all aspects of molecular modelling. Molecular modelling in this context refers to modelliing the structure, properties and reactions of atoms, molecules and materials. Each chapter provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area.
This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.
Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series is invaluable to chemical engineers and chemists working in the field of catalysis in academia or industry.
This book is intended to serve as a textbook for advanced undergraduate and graduate students as well as professionals engaged in application of thermo-fluid science to the study of combustion. The relevant thermo-chemistry and thermo-physical data required for this study are provided in the 6 appendices along with appropriate curve-fit coefficients. To facilitate gradual learning, two chapters are devoted to thermodynamics of pure and gaseous mixture substances, followed by one chapter each on chemical equilibrium and chemical kinetics. This material when coupled with a dedicated chapter on understanding of equations governing transport of momentum, heat and mass in the presence of chemical reactions provides adequate grounding to undertake analysis of practical combustion equipment, of premixed and diffusion flames as well as of solid particle and liquid droplet combustion. The learnings from the aforementioned chapters are taken to a uniquely strong chapter on application case studies, some of which have special relevance for developing countries.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
"Computer Simulation in Chemical Physics" contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the years that have elapsed since the field was last summarised there have been a number of advances which have significantly expanded the scope of the methods. Good examples are the Car-Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid vapour phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational-biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of recent software. All these developments, and more, are discussed in an accessible way here, making the text suitable reading for graduate students and research scientists in both academic and industrial settings.
In his thesis, Florian Schweinberger investigates the influence of the precise size of catalytically active species on reactivity. In order to do this he carries out studies both in UHV and under ambient conditions for supported, size-selected Platium clusters (8-68 atoms). Schweinberger probed the electronic structure, adsorption properties and reactivity of two olefins on surfaces and Pt clusters in the submonolayer range. With adsorbed trichloroethene (TCE) a possible cluster-adsorbate induced change in the electronic structure, and for ethene a low-temperature, size-dependent self-/hydrogenation was observed.In a collaborative approach, Schweinberger and colleagues investigated Pt clusters under ambient pressure conditions. They characterised the clusters at at the local and integral level and tested for temperature stability. Experiments in gas phase ?-reactors and in liquid, as part of a hybrid photocatalytic system, revealed size-dependent reactivity.Overall this thesis is not only of interest for those who want to perform similar experiments but also provides superb scientific insights for researchers in the field. |
![]() ![]() You may like...
Artificial Intelligence for Knowledge…
Eunika Mercier-Laurent, M. OEzgur Kayalica, …
Hardcover
R2,649
Discovery Miles 26 490
The Politics and Processes of…
Lagretta Lenker, Joseph Moxley
Hardcover
R2,787
Discovery Miles 27 870
Higher Education and the Future of…
Ruth Bridgstock, Neil Tippett
Hardcover
R3,480
Discovery Miles 34 800
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
Modern Day Challenges in Academia - Time…
Marilena Antoniadou, Mark Crowder
Paperback
R1,296
Discovery Miles 12 960
Images From The History Of The Public…
United States Public Health Service
Hardcover
R865
Discovery Miles 8 650
|