![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
Catalysis literature can be difficult to read if there is not a sufficient understanding of the underlying connections between the chemical, materials and engineering aspects of catalysis. As a result, many students lack the depth of knowledge to effectively understand the topic.Introduction to Heterogeneous Catalysis solves this issue by presenting not only the basic concepts of catalysis but also, right from the beginning, integrating the chemical, materials and engineering aspects of catalysis in examples taken directly from industry.Aimed at master's and PhD students with a limited background in chemistry, this book provides a thorough introduction to the principles behind catalysis that will enable readers to understand the concepts and analyse the literature necessary for its study.
The second edition of "Elementary Molecular Quantum Mechanics"
shows the methods of molecular quantum mechanics for graduate
University students of Chemistry and Physics. This readable book
teaches in detail the mathematical methods needed to do working
applications in molecular quantum mechanics, as a preliminary step
before using commercial programmes doing quantum chemistry
calculations. This book aims to bridge the gap between the classic
Coulson s Valence, where application of wave mechanical principles
to valence theory is presented in a fully non-mathematical way, and
McWeeny s Methods of Molecular Quantum Mechanics, where recent
advances in the application of quantum mechanical methods to
molecular problems are presented at a research level in a full
mathematical way. Many examples and mathematical points are given
as problems at the end of each chapter, with a hint for their
solution. Solutions are then worked out in detail in the last
section of each Chapter.
This book covers intentional design aspects for combinations of drugs, single-molecule hybrids with potential or actual multiple actions, pro-drugs which could yield multiple activity outcomes, and future possibilities. The approach of the book is interdisciplinary, and it provides greater understanding of the complex interplay of factors involved in the medicinal chemistry design and laboratory development of multiply active antibacterials. The scope of the book appeals to readers who are researching in the field of antibacterials using the approach of medicinal chemistry design and drug development.
This book covers a broad range of topics from the interdisciplinary research field of ultrafast intense laser science, focusing on atoms and molecules interacting with intense laser fields, laser-induced filamentation, high-order harmonics generation, and high power lasers and their applications. This sixteenth volume features contributions from world-renowned researchers, introducing the latest reports on probing molecular chirality with intense laser fields, and the most recent developments in the Shanghai Superintense Ultrafast Laser Facility project. The PUILS series delivers up-to-date reviews of progress in this emerging interdisciplinary research field, spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each of their own subfields of ultrafast intense laser science. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, especially graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
Advances in Quantum Chemistry presents surveys of current topics
in this rapidly developing field that has emerged at the cross
section of the historically established areas of mathematics,
physics, chemistry, and biology. It features detailed reviews
written by leading international researchers. This series provides
a one-stop resource for following progress in this
interdisciplinary area.
This book reviews recent physicochemical and biophysical techniques applied in drug discovery research, and it outlines the latest advances in computational drug design. Divided into 10 chapters, the book discusses about the role of structural biology in drug discovery, and offers useful application cases of several biophysical and computational methods, including time-resolved fluorometry (TRF) with Foerster resonance energy transfer (FRET), X-Ray crystallography, nuclear magnetic resonance spectroscopy, mass spectroscopy, generative machine learning for inverse molecular design, quantum mechanics/molecular mechanics (QM/MM,ONIOM) and quantum molecular dynamics (QMT) methods. Particular attention is given to computational search techniques applied to peptide vaccines using novel mathematical descriptors and structure and ligand-based virtual screening techniques in drug discovery research. Given its scope, the book is a valuable resource for students, researchers and professionals from pharmaceutical industry interested in drug design and discovery.
This book deals with functional materials that are in the
frontiers of current materials science and technology research,
development and manufacture. The first of its kind, it deals with
three classes of materials, (1) magnetic semiconductors, (2)
multiferroics, and (3) graphene. Because of the wide popularity of
these materials there isa strong need for a book about these
materials for graduate students, new researchers in science and
technology, as well as experienced scientists and technologists,
technology based companies and government institutes for science
and technology. Thebook will provide this broad audience with both
theoretical and experimental understanding to help in technological
advances in the development of devices and related new technologies
based on these very interesting and novel materials.
This book provides state-of-the-art information on how studies in applied theoretical organic chemistry are conducted. It highlights the many approaches and tools available to those interested in using computational chemistry to predict and rationalize structures and reactivity of organic molecules. Chapters not only describe theoretical techniques in detail, but also describe recent applications and offer practical advice.Authored by many of the world leaders in the field of applied theoretical chemistry, this book is perfect for both practitioners of computational chemistry and synthetic and mechanistic organic chemists curious about applying computational techniques to their research.Related Link(s)
This book is an introduction to the concept of symmetries in electromagnetism and explicit symmetry breaking. It begins with a brief background on the origin of the concept of symmetry and its meaning in fields such as architecture, mathematics and physics. Despite the extensive developments of symmetry in these fields, it has yet to be applied to the context of classical electromagnetism and related engineering applications. This book unravels the beauty and excitement of this area to scientists and engineers.
Magnetochemistry is concerned with the study of magnetic
properties in materials. It investigates the relationship between
the magnetic properties of chemical compounds and their atomic and
molecular structure. This rapidly growing field has a number of
applications, and the measuring and interpreting of magnetic
properties is often conducted by scientists who are not specialists
in the field. Magnetochemistry requires complex mathematics and
physics and so can be daunting for those who have not previously
studied it in depth. Aimed at providing a single source of
information on magnetochemistry, this book offers a comprehensive
and contemporary review of the mathematical background and formula
for predicting or fitting magnetic data, including a summary of the
theory behind magnetochemistry to help understand the necessary
calculations. Along with tables listing the key formula, there is
also a model of the magnetic functions showing the effect of
individual magnetic parameters. The clear structure and
comprehensive coverage of all aspects of magnetochemistry will make
this an essential book for advanced students and
practitioners.
Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, is a primary text for a course in two-dimensional (2-D) nuclear magnetic resonance (NMR) techniques, with the goal to learn to identify organic molecular structure. It presents strategies for assigning resonances to known structures and for deducing structures of unknown organic molecules based on their NMR spectra. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; strategies for elucidating unknown molecular structures; simple and complex assignment problems; and simple and complex unknown problems. Each chapter includes problems that will enable readers to test their understanding of the material discussed. The book contains 30 known and 30 unknown structure determination problems. It also features a supporting website from which instructors can download the structures of the unknowns in selected chapters, digital versions of all figures, and raw data sets for processing. This book will stand as a single source to which instructors and students can go to obtain a comprehensive compendium of NMR problems of varying difficulty.
This thesis makes significant advances to the understanding of bottlebrush polymers. While bottlebrushes have received much attention due to the recent discovery of their unprecedented properties, including supersoftness, ultra-low viscosity, and hyperelasticity, this thesis is the first fundamental investigation at the molecular level that comprises structure and dynamics. Neutron scattering experiments, detailed within, reveal spherical or cylindrical shapes, instead of a random coil conformation. Another highlight is the analysis of the fast dynamics at the sub nm-length scale. The combination of three neutron spectrometers and the development of a new analysis technique enabled the calculation of the mean-square displacement over seven orders of magnitude in time scale. This unprecedented result can be applied to a broad class of samples, including polymers and other materials. The thesis is accessible to scientists from other fields, provides the reader with easily understandable guidelines for applying this analysis to other materials, and has the potential to make a significant impact on the analysis of neutron scattering data.
This book focuses on the computational modeling of organometallic reactivity. In recent years, computational methods, particularly those based on Density Functional Theory (DFT) have been fully incorporated into the toolbox of organometallic chemists' methods. Nowadays, energy profiles of multistep processes are routinely calculated, and detailed mechanistic pictures of the reactions arise from these calculations. This type of analysis is increasingly performed even by experimentalists themselves. The volume aims to connect established computational organometallics with the more recent theoretical and methodological developments applied to this field. This would allow broadening of the simulation scope toward emergent organometallic areas (as ligand design or photoactivated processes), to narrow the gap between calculations and experiments (microkinetic models) and even to discover new reactions (automated methods). Given the broad interest and extensive application that computational methods have reached within the organometallic community, this new volume will attract the interest of both experimental and computational organometallic chemists.
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
"Perovskite-Based Solar Cells: From Fundamentals to Tandem Devices" gives fundamental understanding of perovskite solar cells from the chemical composition of each thin layer composing the different stacks to the whole device. Special attention has been given to the development of the materials forming the perovskite solar cell and their effect on the device performance, in addition to the recent progress of this emerging technology. Moreover, light has been shed on the perovskite elaboration techniques, in addition to the several techniques proposed to improve both the efficiency and the stability of perovskite solar cells. Furthermore, special emphasis was given to the three types of tandem solar cells and their recent advances starting from Perovskite/perovskite tandem solar cells to Perovskite/ CIGS tandem cells to perovskite/ heterojunction silicon tandem solar cells. The latter constitute a promising solution to improve photovoltaic solar cells performance.
The thesis focuses on the syntheses, structural characterizations and chemical bonding analyses for several ternary R-M-Ge (R = rare earth metal; M = another metal) intermetallics. The challenges in understanding the main interactions governing the chemistry of these compounds, which lead to our inability to predict their formation, structure and properties, are what provided the motivation for this study. In particular, the R2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag), R4MGe10-x (M = Li, Mg), R2Pd3Ge5, Lu5Pd4Ge8, Lu3Pd4Ge4 and Yb2PdGe3 phases were synthesized and structurally characterized. Much effort was put into the stabilization of metastable phases, employing the innovative metal flux method, and into the accurate structure solution of twinned crystals. Cutting-edge position-space chemical bonding techniques were combined with new methodologies conceived to correctly describe the Ge-M, Ge-La and also La-M polar-covalent interactions for the La2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag) series. The present results constitute a step forward in our comprehension of ternary germanide chemistry as well as providing a good playground for further investigations.
This book presents the most important and main concepts of the molecular and microsimulation techniques. It enables readers to improve their skills in developing simulation programs by providing physical problems and sample simulation programs for them to use.
Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. "Photochemistry and Photophysics of Polymer Materials" is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications. |
![]() ![]() You may like...
Unicorn Coloring Book - Great Coloring…
Amelia Barbra Faith
Hardcover
Memorial book - The Ritavas Community: A…
Alter Levite, Dina Porat, …
Hardcover
|