![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
The revised edition gives a comprehensive mathematical and physical presentation of fluid flows in non-classical models of convection - relevant in nature as well as in industry. After the concise coverage of fluid dynamics and heat transfer theory it discusses recent research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.
Quantum Boundaries of Life, Volume 82 in the Advances in Quantum Chemistry series, presents current topics in this rapidly developing field that have emerged at the cross section of mathematics, physics, chemistry and biology. Topics covered include Quantum Considerations of Neural Memory, Functional Neural Electron Transport, Plasmon-polariton mechanism of the saltatory conduction in myelinated axons, Quantum Field Theory Formulation of Brain Dynamics: Nonequilibrium, Multi Field Theory Formulation of Brain Dynamics, Quantum Protein Folding, Classical-Quantum Interplay in Living Neural Tissue Function, Quantum Effects in Life Dynamics, Quantum transport and utilization of free energy in protein a-helices, and much more. The book's message is simple. Mystics prefer to put consciousness in the cosmos to avoid Darwinism. If the seat of consciousness is found to evolve within all animals, then we have a Darwinian understanding not only of the origin of life and species according to natural selection but also concerning consciousness and, in particular, life being quantum Darwinian.
This book introduces the new concept of "nanozyme", which refers to nanomaterials with intrinsic enzymatic activity, rather than nanomaterials with biological enzymes incorporated on the surface. The book presents the cutting-edge advances in nanozyme, with emphasis on state-of-the-art applications in many important fields, such as in the biomedical fields and for environmental protection. The nanozyme is a totally new type of artificial enzyme and exhibits huge advantages over natural enzymes, including greater stability, low cost, versatility, simplicity, and suitability for industry. It is of interest to university researchers, R&D engineers, as well as graduate students in nanoscience and technology, and biology wishing to learn the core principles, methods, and the corresponding applications of "nanozyme".
Quantum mechanics - central not only to physics, but also to chemistry, materials science, and other fields - is notoriously abstract and difficult. Essential Quantum Mechanics is a uniquely concise and explanatory book that fills the gap between introductory and advanced courses, between popularizations and technical treatises. By focusing on the fundamental structure, concepts, and methods of quantum mechanics, this introductory yet sophisticated work emphasizes both physical and mathematical understanding. A modern perspective is adopted throughout - the goal, in part, being to gain entry into the world of 'real' quantum mechanics, as used by practicing scientists. With over 60 original problems, Essential Quantum Mechanics is suitable as either a text or a reference. It will be invaluable to physics students as well as chemists, electrical engineers, philosophers, and others whose work is impacted by quantum mechanics, or who simply wish to better understand this fascinating subject.
This book provides a unique and comprehensive overview of the latest advances, challenges and accomplishments in the rapidly growing field of theoretical and computational materials science. Today, an increasing number of industrial communities rely more and more on advanced atomic-scale methods to obtain reliable predictions of materials properties, complement qualitative experimental analyses and circumvent experimental difficulties. The book examines some of the latest and most advanced simulation techniques currently available, as well as up-to-date theoretical approaches adopted by a selected panel of twelve international research teams. It covers a wide range of novel and advanced materials, exploring their structural, elastic, optical, mass and electronic transport properties. The cutting-edge techniques presented appeal to physicists, applied mathematicians and engineers interested in advanced simulation methods in materials science. The book can also be used as additional literature for undergraduate and postgraduate students with majors in physics, chemistry, applied mathematics and engineering.
In this book, the author focuses on exploring new organocatalytic transformations under operationally simple and environmentally friendly reaction conditions. Two new types of catalytic reactions promoted by N-heterocyclic carbenes (NHCs) are described. The oxa- and azacycle-forming reactions of sulfonylalkynols and sulfonylalkynamides are broadly considered to be a new type of activation mode in NHC chemistry, wherein the bond formation with internal O- and N-nucleophiles occurs at the -position of the propargyl sulfones with 1,2-sulfonyl migration. The resulting oxa- and azacycles are core structures in many biologically significant compounds and medicinally important agents. In addition, the book develops the chiral NHC-catalyzed kinetic resolution of -hydroxy carboxylic acid derivatives based on chiral recognition of the substrate-cocatalyst complex. In this carboxylate cocatalyst-assisted chiral acylation, the reaction rate acceleration and selectivity enhancement are interpreted in terms of the reversible complexation of the substrate and carboxylate cocatalyst, which is verified by control experiments and measured using analytical methods. The findings described here reveal a promising new aspect of not only NHC catalysis but also identifying novel catalysis systems.
The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs. The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.
This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology.
This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. "In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work." G. Petzow in International Journal of Materials Research. "The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick 'cook book' type text, but as a serious, critical treatise for some significant time to come." G.S. Upadhyaya in Science of Sintering. "The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, 'Intermezzos', 'Epilogues' and asides within the text from the author's experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science." M. Davies in Materials World.
This book deals with the electro-chemo-mechanical properties characteristic of and unique to solid electrode surfaces, covering interfacial electrochemistry and surface science. Electrochemical reactions such as electro-sorption, electro-deposition or film growth on a solid electrode induce changes in surface stress or film stress that lead to transformation of the surface phase or alteration of the surface film. The properties of solid electrode surfaces associated with the correlation between electrochemical and mechanical phenomena are named "electro-chemo-mechanical properties". The book first derives the surface thermodynamics of solid electrodes as fundamentals for understanding the electro-chemo-mechanical properties. It also explains the powerful techniques for investigating the electro-chemo-mechanical properties, and reviews the arguments for derivation of surface thermodynamics of solid electrodes. Further, based on current experimental findings and theories, it discusses the importance of the contribution of surface stress to the transformation of surface phases, such as surface reconstruction and underpotential deposition in addition to the stress evolution during film growth and film reduction. Moreover, the book describes the nano-mechanical properties of solid surfaces measured by nano-indentation in relation to the electro-chemo-mechanical properties. This book makes a significant contribution to the further development of numerous fields, including electrocatalysis, materials science and corrosion science.
This book presents Pd- and Ni-catalyzed transformations generating functionalized heterocycles. Transition metal catalysis is at the forefront of synthetic organic chemistry since it offers new and powerful methods to forge carbon-carbon bonds in high atom- and step-economy. In Chapter 1, the author describes a Pd- and Ni-catalyzed cycloisomerization of aryl iodides to alkyl iodides, known as carboiodination. In the context of the Pd-catalyzed variant, the chapter explores the production of enantioenriched carboxamides through diastereoselective Pd-catalyzed carboiodination. It then discusses Ni-catalyzed reactions to generate oxindoles and an enantioselective variant employing a dual ligand system. Chapter 2 introduces readers to a Pd-catalyzed diastereoselective anion-capture cascade. It also examines diastereoselective Pd-catalyzed aryl cyanation to synthesize alkyl nitriles, a method that generates high yields of borylated chromans as a single diastereomer, and highlights its synthetic utility. Lastly, Chapter 3 presents a Pd-catalyzed domino process harnessing carbopalladation, C-H activation and -system insertion (benzynes and alkynes) to generate spirocycles. It also describes the mechanistic studies performed on these reactions.
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. In each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.
The field of relativistic electronic structure theory is generally
not part of theoretical chemistry education, and is therefore not
covered in most quantum chemistry textbooks. This is due to the
fact that only in the last two decades have we learned about the
importance of relativistic effects in the chemistry of heavy and
superheavy elements. Developments in computer hardware together
with sophisticated computer algorithms make it now possible to
perform four-component relativistic calculations for larger
molecules. Two-component and scalar all-electron relativistic
schemes are also becoming part of standard ab-initio and density
functional program packages for molecules and the solid state. The
second volume of this two-part book series is therefore devoted to
applications in this area of quantum chemistry and physics of
atoms, molecules and the solid state. Part 1 was devoted to
fundamental aspects of relativistic electronic structure theory
whereas Part 2 covers more of the applications side. This volume
opens with a section on the Chemistry of the Superheavy Elements
and contains chapters dealing with Accurate Relativistic Fock-Space
Calculations for Many-Electron Atoms, Accurate Relativistic
Calculations Including QED, Parity-Violation Effects in Molecules,
Accurate Determination of Electric Field Gradients for Heavy Atoms
and Molecules, Two-Component Relativistic Effective Core Potential
Calculations for Molecules, Relativistic Ab-Initio Model Potential
Calculations for Molecules and Embedded Clusters, Relativistic
Pseudopotential Calculations for Electronic Excited States,
Relativistic Effects on NMR Chemical Shifts, Relativistic Density
Functional Calculations on Small Molecules, Quantum Chemistry with
the Douglas-Kroll-Hess Approach to Relativistic Density Functional
Theory, and Relativistic Solid State Calculations.
Electron Correlation in Molecules - ab initio Beyond Gaussian Quantum Chemistry presents a series of articles concerning important topics in quantum chemistry, including surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology.
This book provides details of the basic frameworks and characteristics of processes occurring in electronically excited states of small molecules, complexes, and clusters. It discusses the perturbations in electronically excited valence states of molecules induced by intramolecular interaction and intermolecular interactions, which occur in collisions and optically populated, weakly bound complexes. Further, it describes the kinetics and mechanisms of photoprocesses in simple molecules and recombination accompanied by radiation. The book also offers information on general kinetics for gas-phase processes and basic theoretical frameworks for elementary processes. It features many useful problems, making it a valuable resource for students and researchers in molecular spectroscopy/molecular physics and chemical physics/physical chemistry.
This book presents recently developed computational approaches for the study of reactive materials under extreme physical and thermodynamic conditions. It delves into cutting edge developments in simulation methods for reactive materials, including quantum calculations spanning nanometer length scales and picosecond timescales, to reactive force fields, coarse-grained approaches, and machine learning methods spanning microns and nanoseconds and beyond. These methods are discussed in the context of a broad range of fields, including prebiotic chemistry in impacting comets, studies of planetary interiors, high pressure synthesis of new compounds, and detonations of energetic materials. The book presents a pedagogical approach for these state-of-the-art approaches, compiled into a single source for the first time. Ultimately, the volume aims to make valuable research tools accessible to experimentalists and theoreticians alike for any number of scientific efforts, spanning many different types of compounds and reactive conditions.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
This book presents the design and development of an Internet of Things (IoT) enabled, smart sensor to detect nitrate contamination in natural water. It considers three different sensors designed, fabricated and configured for nitrate detection: a Graphite/PDMS and Si-based MEMS sensors, and aFR4-based sensor. It also introduces a selective polymer material developed by means of the ion imprinting polymerization technique that was used as a coating on the Si-based MEMS sensor. Further, the book discusses the development of a smart sensing system that can be used to remotely monitor the nitrate concentration in any water. Fully explaining all the techniques used, the book is of interest to engineers, researchers and scientists working in the field of the water-quality measurement.
This textbook provides an accessible introduction to physics for undergraduate students in the life sciences, including those majoring in all branches of biology, biochemistry, and psychology and students working on pre-professional programs such as pre-medical, pre-dental, and physical therapy. The text is geared for the algebra-based physics course, often named College Physics in the United States. The order of topics studied are such that most of the problems in the text can be solved with the methods of Statics or Dynamics. That is, they require a free body diagram, the application of Newton’s Laws, and any necessary kinematics. Constructing the text with a standardized problem-solving methodology, simplifies this aspect of the course and allows students to focus on the application of physics to the study of biological systems. Along the way, students apply these techniques to find the tension in a tendon, the sedimentation rate of red blood cells in haemoglobin, the torques and forces on a bacterium employing a flagellum to propel itself through a viscous fluid, and the terminal velocity of a protein moving in a Gel Electrophoresis device. This is part one of a two-volume set; volume 2 introduces students to the conserved-quantities and applies these problem-solving techniques to topics in Thermodynamics, Electrical Circuits, Optics, and Atomic and Nuclear Physics always with continued focus on biological applications.
A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation is a groundbreaking reference work offering a broad, detailed and highly practical vision of the complex concept of sustainability in plastics. The book's aim is to present a range of potential pathways towards more sustainable plastics parts and products, enabling the reader to further integrate the idea of sustainability into their design process. It begins by introducing the context and concept of sustainability, discussing perceptions, drivers of change, key factors, and environmental issues, before presenting a detailed outline of the current situation with types of plastics, processing, and opportunities for improved sustainability. Subsequent chapters focus on the different possibilities for improved sustainability, offering a step-by-step technical approach to areas including design, properties, renewable plastics, and recycling and re-use. Each of these pillars are supported by data, examples, analysis and best practice guidance. Finally, the latest developments and future possibilities are considered. |
![]() ![]() You may like...
Somatic Psychotherapy Toolbox - 125…
Manuela Mischke-Reeds
Paperback
Crisis Intervention Strategies
Richard James, Burl Gilliland
Paperback
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
|