![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry
The book highlights recent prominent results in the domain of the synthesis of new polyoxometalates with a specific attention to polyoxothioanions, and provides some novelties and perspectives in selected domains such as magnetism, luminescence and nanochemistry, and macroions self-assembly in solutions. The case of "one-pot" syntheses often used and reported in POMs synthesis is studied in terms of more complex solution speciation processes related to highly dynamical situation connected to factors such as pH, ionic strength, reaction time, temperature, counterion nature, concentration of starting materials, presence of electron donors and redox potentials. The behavior of macroions (2nm-6nm size range) in solution is shown to be quite different from the simple ionic solution or colloidal systems (Debye-Huckel model). Their self-assembling into a single-layered, spherical, hollow vesicle structure, namely the "blackberry" structure, is clearly described. Examples of spin clusters with tunable interactions are given and single molecule magnets based on POMs are specifically tackled. Besides paramagnetic transition metal centres and lanthanoid ions encapsulated in archetypal lacunary polyoxoanions, magnetically functionalized Kleperates are described, their discovery tracing back nearly 15 years.
This book is an enthusiastic account of Pierre Laszlo's life and pioneering work on catalysis of organic reactions by modified clays, and his reflections on doing science from the 1960s to 1990s. In this autobiography, readers will discover a first-hand testimony of the chemical revolution in the second half of the 20th century, and the author's perspective on finding a calling in science and chemistry, as well as his own experience on doing science, teaching science and managing a scientific career. During this period, Pierre Laszlo led an academic laboratory and worked also in three different countries: the US, Belgium and France, where he had the opportunity to meet remarkable colleagues. In this book, he recalls his encounters and collaborations with important scientists, who shaped the nature of chemistry at times of increased pace of change, and collates a portrait of the worldwide scientific community at that time. In addition, the author tells us about the turns and twists of his own life, and how he ended up focusing his research on clay based chemistry, where clay minerals were turned in his lab to catalysis of key chemical transformations. Given its breath, the book offers a genuine information on the life and career of a chemist, and it will appeal not only to scientists and students, but also to historians of science and to the general reader.
This book presents the synthetic methodologies as well as the properties and potential usage of various ruthenium-containing materials. Starting from the first examples of 'ruthenopolymers' reported in the 1970s to the 3D architectures now synthesized, these materials have shown their importance far beyond fundamental polymer science. As well as highlighting the remarkable properties and versatile applications, this book also addresses a key question related to the applications of such heavy-metal-containing materials from the perspective of achieving a sustainable future. This book is of interest to both materials scientists and chemists in academia and industry.
This textbook introduces the molecular side of physical chemistry. It offers students and practitioners a new approach to the subject by presenting numerous applications and solved problems that illustrate the concepts introduced for varied and complex technical situations. The book offers a balance between theory, tools, and practical applications. The text aims to be a practical manual for solving engineering problems in industries where processes depend on the chemical composition and physical properties of matter. The book is organized into three main topics: (I) the molecular structure of matter, (II) molecular models in thermodynamics, and (III) transport phenomena and mechanisms. Part I presents methods of analysis of the molecular behavior in a given system, while the following parts use these methods to study the equilibrium states of a material system and to analyze the processes that can take place when the system is in a state of non-equilibrium, in particular the transport phenomena. Molecular Physical Chemistry for Engineering Applications is designed for upper-level undergraduate and graduate courses in physical chemistry for engineers, applied physical chemistry, transport phenomena, colloidal chemistry, and transport/transfer processes. The book will also be a valuable reference guide for engineers, technicians, and scientists working in industry. Offers modeling techniques and tools for solving exercises and practical cases; Provides solutions and conclusions so students can follow results more closely; Step-by-step problem solving enables students to understand how to approach complex issues.
Catalysis literature can be difficult to read if there is not a sufficient understanding of the underlying connections between the chemical, materials and engineering aspects of catalysis. As a result, many students lack the depth of knowledge to effectively understand the topic.Introduction to Heterogeneous Catalysis solves this issue by presenting not only the basic concepts of catalysis but also, right from the beginning, integrating the chemical, materials and engineering aspects of catalysis in examples taken directly from industry.Aimed at master's and PhD students with a limited background in chemistry, this book provides a thorough introduction to the principles behind catalysis that will enable readers to understand the concepts and analyse the literature necessary for its study.
This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury "ionization scheme" development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
Advances in Quantum Chemistry presents surveys of current topics
in this rapidly developing field that has emerged at the cross
section of the historically established areas of mathematics,
physics, chemistry, and biology. It features detailed reviews
written by leading international researchers. This series provides
a one-stop resource for following progress in this
interdisciplinary area.
PVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC. Separate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety and environment. This book contains analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. PVC Degradation and Stabilization is must to have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.
This book covers intentional design aspects for combinations of drugs, single-molecule hybrids with potential or actual multiple actions, pro-drugs which could yield multiple activity outcomes, and future possibilities. The approach of the book is interdisciplinary, and it provides greater understanding of the complex interplay of factors involved in the medicinal chemistry design and laboratory development of multiply active antibacterials. The scope of the book appeals to readers who are researching in the field of antibacterials using the approach of medicinal chemistry design and drug development.
This book covers a broad range of topics from the interdisciplinary research field of ultrafast intense laser science, focusing on atoms and molecules interacting with intense laser fields, laser-induced filamentation, high-order harmonics generation, and high power lasers and their applications. This sixteenth volume features contributions from world-renowned researchers, introducing the latest reports on probing molecular chirality with intense laser fields, and the most recent developments in the Shanghai Superintense Ultrafast Laser Facility project. The PUILS series delivers up-to-date reviews of progress in this emerging interdisciplinary research field, spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each of their own subfields of ultrafast intense laser science. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, especially graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
Nanocolloids: A Meeting Point for Scientists and Technologists presents an easy-to-read approach to current trends in nanoscale colloid chemistry, which offers relatively simple and economically feasible ways to produce nanomaterials. Nanocolloids have been the subjects of major development in modern technology, with many current and future applications. The book helps scientists and technologists to understand the different aspects of modern nanocolloid science. It outlines the underlying fundamental principles of nanocolloid science and covers applications ranging from emulsions to dispersions and suspensions. You will find details on experimental techniques and methods for the synthesis and characterization of nanocolloids, including the latest developments in nanoemulsions and nanoparticles.
Practical skills form the cornerstone of chemistry. However, the diversity of skills required in the laboratory means that a student's experience may be limited. While some techniques do require specific skills, many of them are transferable generic skills that are required throughout the subject area. Limited time constraints of the modern curriculum often preclude or minimise laboratory time. Practical Skills in Chemistry 3rd edition provides a general guidance for use in and out of practical sessions, covering a range of techniques from the basic to the more advanced. This 'one-stop' text will guide you through the wide range of practical, analytical and data handling skills that you will need during your studies. It will also give you a solid grounding in wider transferable skills such as teamwork, using information technology, communicating information and study skills. This edition has been enhanced and updated throughout to provide a complete and easy-to-read guide to the developing skills required from your first day through to graduation, further strengthening its reputation as the practical resource for students of chemistry and related discipline areas.
Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In "Advanced Materials Science and Engineering of Carbon," noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons,
carbon nanotubes, and graphenes, the book then reviews recently
developed carbonization techniques, such as templating,
electrospinning, foaming, stress graphitization, and the formation
of glass-like carbon. The last third of the book is devoted to
applications, featuring coverage of carbon materials for energy
storage, electrochemical capacitors, lithium-ion rechargeable
batteries, and adsorptive storage of hydrogen and methane for
environmental protection, photocatalysis, spilled oil recovery, and
nuclear applications of isotropic high-density graphite.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
This book reviews recent physicochemical and biophysical techniques applied in drug discovery research, and it outlines the latest advances in computational drug design. Divided into 10 chapters, the book discusses about the role of structural biology in drug discovery, and offers useful application cases of several biophysical and computational methods, including time-resolved fluorometry (TRF) with Foerster resonance energy transfer (FRET), X-Ray crystallography, nuclear magnetic resonance spectroscopy, mass spectroscopy, generative machine learning for inverse molecular design, quantum mechanics/molecular mechanics (QM/MM,ONIOM) and quantum molecular dynamics (QMT) methods. Particular attention is given to computational search techniques applied to peptide vaccines using novel mathematical descriptors and structure and ligand-based virtual screening techniques in drug discovery research. Given its scope, the book is a valuable resource for students, researchers and professionals from pharmaceutical industry interested in drug design and discovery.
Annual Reports on NMR Spectroscopy, Volume 97, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. In recent years, no other technique has gained as much significance. It is used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
This book provides state-of-the-art information on how studies in applied theoretical organic chemistry are conducted. It highlights the many approaches and tools available to those interested in using computational chemistry to predict and rationalize structures and reactivity of organic molecules. Chapters not only describe theoretical techniques in detail, but also describe recent applications and offer practical advice.Authored by many of the world leaders in the field of applied theoretical chemistry, this book is perfect for both practitioners of computational chemistry and synthetic and mechanistic organic chemists curious about applying computational techniques to their research.Related Link(s) |
![]() ![]() You may like...
Nonlinear Waves and Weak Turbulence…
Fitzmaurice, Gurarie, …
Hardcover
R4,751
Discovery Miles 47 510
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
Digital Transformation of Collaboration…
Aleksandra Przegalinska, Francesca Grippa, …
Hardcover
R3,320
Discovery Miles 33 200
|