![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Preface.- The Constant Function c.- The Factorial Function n!.- The Zeta Numbers and Related Functions.- The Bernoulli Numbers Bn.- The Euler Numbers En.- The Bionmial Coefficients.- The Linear Function bx + c and Its Reciprocal.- Modifying Functions.- The Heaviside and Dirac Functions.- The Integer Powers xn and (bx + c)n.- The Square-Root Function and Its Reciprocal.- The Noninteger Power xv.- The Semielliptic Function and Its Reciprocal.- The (b/a)square root of x2 +- a2 Functions and Their Reciprocals.- The Quadratic Function ax + bx + c and Its Reciprocal.- The Cubic Function x3 + bx + c.- Polynomial Functions.- The Pochhammer Polynomials (x)n.- The Bernoulli Polynomials Bn(x).- The Euler Polynomials En(x).- The Legendre Polynomials Pn(x).- The Chebyshev Polynomials Tn(x) and Un(x).- The Laguerre Polynomials Ln(x).- The Hermite Polynomials Hn(x).- The Logarithmic Function ln(x).- The Exponential Function exp(x).- Exponential of Powers.- The Hyperbolic Cosine cosh(x). and Sine sinh(x) Functions.- The Hyperbolic Secant and Cosecant Functions.- The Inverse Hyperbolic Functions.- The Cosine cox(x) and Sine sin(x) Functions.- The Secant sec(x) and Cosecant csc(x) Fucntions.- The Tangent tan(x) and Cotangent cot(x) Functions.- The Inverse Circular Functions.- Periodic Functions.- The Exponential Integrals Ei(x) and Ein(x).- Sine and Cosine Integrals.- The Fresnel Integrals C(x) and S(x).- The Error Function erf(x) and Its Complement erfc(x).- The exp(x)erfc(square root of x) and Related Functions.- Dawson's Integral daw(x).- The Gamma Function.- The Digamma Function.- The Incomplete Gamma Functions.- The Parabolic Cylinder Function Dv(x).- The Kummer Function M(a, c, x).- The Tricomi Function U(a, c, x).- The Modified Bessel Functions In(x) of Integer Order.- The Modified Bessel Functions of In(x) Arbitrary Order.- The Macdonald Function Kv(x).- The Bessel Functions Jn(x) of Integer Order.- The Bessel Functions Jv(x) of Arbitrary Order.- The Neumann Function Yv(x). The Kelvin Functions.- The Airy Functions Ai(x) and Bi(x).- The Struve Function hv(x).- The Incomplete Beta Function.- The Legendre Functions Pv(x) and Qv(x).- The Gauss Hypergeometric Function F(a, b, c, x).- The Complete Elliptic Integrals K(k) and E(k).- The Incomplete Elliptic Integrals.- The Jacobian Elliptic Functions.- The Hurwitz Function.- Appendix A: Useful Data.- Appendix B: Bibliography.- Appendix C: Equator, The Atlas Function Calculator.- Symbol Index.- Subject Ind
This book represents the refereed proceedings of the Third International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at Claremont Graduate University in 1998. An important feature are invited surveys of the state of the art in key areas such as multidimensional numerical integration, low-discrepancy point sets, random number generation, and applications of Monte Carlo and quasi-Monte Carlo methods. These proceedings include also carefully selected contributed papers on all aspects of Monte Carlo and quasi-Monte Carlo methods. The reader will be informed about current research in this very active area.
Not only does this text explain the theory underlying the properties of the generalized operator, but it also illustrates the wide variety of fields to which these ideas may be applied. Topics include integer order, simple and complex functions, semiderivatives and semi-integrals, and transcendental functions. 1974 edition.
This exposition examines fundamentals of Monte Carlo methods plus discrete and continuous random walk processes and standard variance reduction techniques. It focuses on methods of superposition and reciprocity, illustrating applications that include computation of thermal neutron fluxes and the superposition principle in resonance escape computations. 1969 edition.
|
![]() ![]() You may like...
Guerrilla Prince - Real Story of the…
Georgie Anne Geyer
Hardcover
|