Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Engineering Rock Mechanics Part II: Illustrative Worked Examples
can be used as an independent book or alternatively it complements
an earlier publication called Engineering Rock Mechanics: An
Introduction to the Principles by the same authors.
The exploration and extraction of the earth's resources are key issues in global industrial development. In the 21st century, emphasis has increasingly being placed on geo-engineering safety, engineering accountability and sustainability. With focus on rock engineering projects, Structural Geology and Rock Engineering uses case studies and an integrated engineering approach to provide an understanding of projects constructed on or in rock masses. Based on Professors Cosgrove and Hudson's university teaching at Imperial College London, as well as relevant short course presentations, it explains the processes required for engineering modelling, design and construction.The first half of the book provides step-by-step presentations of the principles of structural geology and rock mechanics with special emphasis on the integration between the two subjects. The second half of the book turns principles into practice. A wealth of practical engineering examples are presented, including evaluations of bridge foundations, quarries, dams, opencast coal mining, underground rock engineering, historical monuments and stone buildings.This up-to-date, well-illustrated guide is ideal for teachers, researchers and engineers interested in the study and practice of rock-based projects in engineering.
This book provides a new, necessary and valuable approach to the consideration of risk in underground engineering projects constructed within rock masses. There are Chapters on uncertainty and risk, rock engineering systems, rock fractures and rock stress, the design of a repository for radioactive waste, plus two major case examples relating to the headrace tunnels and caverns for a hydroelectric project. These Chapters highlight in detail the authors' new rock engineering risk approach, especially how monitoring during construction can significantly reduce the construction risks. The book is particularly timely given the current increasing emphasis on geo-engineering safety, accountability and sustainability-which requires stricter attention to risk and greater reliability than ever before. Written by two eminent authors, the two most recent past-Presidents of the International Society for Rock Mechanics (ISRM), this modern and well-illustrated guide on Rock Engineering Risk complements the authors' previous 2011 book on Rock Engineering Design, also published by Taylor & Francis. The book will benefit engineers, contractors, clients, researchers, lecturers and advanced students who are concerned with rock engineering projects in civil, mining, geological and construction engineering worldwide.
Rock Characterisation, Modelling and Engineering Design Methods contains the contributions presented at the 3rd ISRM SINOROCK Symposium (Shanghai, China, 18-20 June 2013). The papers contribute to the further development of the overall rock engineering design process through the sequential linkage of the three themes of rock characterisation, modelling and design methods, including feedback from the construction process itself. In addition, they enhance the interaction between the rock mechanics community in China and the rock mechanics communities in other countries. Rock Characterisation, Modelling and Engineering Design Methods not only describes the current state-of-the-art in rock characterisation, modelling and design, it also covers the manifold aspects of rock mechanics and rock engineering. The book will be of interest to professionals, engineers and academics involved in the theoretical and practical aspects of rock mechanics and engineering.
Engineering rock mechanics is the discipline used to design
structures built in rock. These structures encompass building
foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric
schemes, mines, radioactive waste repositories and geothermal
energy projects: in short, any structure built on or in a rock
mass. Despite the variety of projects that use rock engineering,
the principles remain the same. Engineering Rock Mechanics clearly
and systematically explains the key principles behind rock
engineering.
The exploration and extraction of the earth's resources are key issues in global industrial development. In the 21st century, emphasis has increasingly being placed on geo-engineering safety, engineering accountability and sustainability. With focus on rock engineering projects, Structural Geology and Rock Engineering uses case studies and an integrated engineering approach to provide an understanding of projects constructed on or in rock masses. Based on Professors Cosgrove and Hudson's university teaching at Imperial College London, as well as relevant short course presentations, it explains the processes required for engineering modelling, design and construction.The first half of the book provides step-by-step presentations of the principles of structural geology and rock mechanics with special emphasis on the integration between the two subjects. The second half of the book turns principles into practice. A wealth of practical engineering examples are presented, including evaluations of bridge foundations, quarries, dams, opencast coal mining, underground rock engineering, historical monuments and stone buildings.This up-to-date, well-illustrated guide is ideal for teachers, researchers and engineers interested in the study and practice of rock-based projects in engineering.
When dealing with rock in civil engineering, mining engineering and other engineering, the process by which the rock fails under load should be understood, so that safe structures can be built on and in the rock. However, there are many ways for loading rock and rock can have a variety of idiosyncracies. This reference book provides engineers and researchers with the essential knowledge for a clear understanding of the process of rock failure under different conditions. It contains an introductory chapter explaining the role of rock failure in engineering projects plus a summary of the theories governing rock failure and an explanation of the computer simulation method. It subsquently deals in detail with explaining, simulating and illustrating rock failure in laboratory and field. The concluding chapter discusses coupled modelling and the anticipated future directions for this type of computer simulation. An appendix describing the RFPA numerical model (Rock Failure Process Analysis program) is also included.
John Hudson is emeritus professor at Imperial College, London and is active as an independant consultant for Rock Engineering Consultants. He has a PhD in Rock Mechanics and completed over a 130 rock engineering consulting assignments in mining and civil engineering. He is a fellow at the Royal Academy of Engineering in the UK and President of the International Society for Rock Mechanics.
This book provides a new, necessary and valuable approach to the consideration of risk in underground engineering projects constructed within rock masses. There are Chapters on uncertainty and risk, rock engineering systems, rock fractures and rock stress, the design of a repository for radioactive waste, plus two major case examples relating to the headrace tunnels and caverns for a hydroelectric project. These Chapters highlight in detail the authors' new rock engineering risk approach, especially how monitoring during construction can significantly reduce the construction risks. The book is particularly timely given the current increasing emphasis on geo-engineering safety, accountability and sustainability-which requires stricter attention to risk and greater reliability than ever before. Written by two eminent authors, the two most recent past-Presidents of the International Society for Rock Mechanics (ISRM), this modern and well-illustrated guide on Rock Engineering Risk complements the authors' previous 2011 book on Rock Engineering Design, also published by Taylor & Francis. The book will benefit engineers, contractors, clients, researchers, lecturers and advanced students who are concerned with rock engineering projects in civil, mining, geological and construction engineering worldwide.
|
You may like...
|