Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This book details a model of consciousness supported by scientific experimental data from the human brain. It presents how the Corollary Discharge of Attention Movement (CODAM) neural network model allows for a scientific understanding of consciousness as well as provides a solution to the Mind-Body problem. The book provides readers with a general approach to consciousness that is powerful enough to lead to the inner self and its ramifications for the vast range of human experiences. It also offers an approach to the evolution of human consciousness and features chapters on mental disease (especially schizophrenia) and on meditative states (including drug-induced states of mind). Solving the Mind-Body Problem bridges the gap that exists between philosophers of mind and the neuroscience community, allowing the enormous weight of theorizing on the nature of mind to be brought to earth and put under the probing gaze of the scientific facts of life and mind.
This both accessible and exhaustive book will help to improve modeling of attention and to inspire innovations in industry. It introduces the study of attention and focuses on attention modeling, addressing such themes as saliency models, signal detection and different types of signals, as well as real-life applications. The book is truly multi-disciplinary, collating work from psychology, neuroscience, engineering and computer science, amongst other disciplines. What is attention? We all pay attention every single moment of our lives. Attention is how the brain selects and prioritizes information. The study of attention has become incredibly complex and divided: this timely volume assists the reader by drawing together work on the computational aspects of attention from across the disciplines. Those working in the field as engineers will benefit from this book's introduction to the psychological and biological approaches to attention, and neuroscientists can learn about engineering work on attention. The work features practical reviews and chapters that are quick and easy to read, as well as chapters which present deeper, more complex knowledge. Everyone whose work relates to human perception, to image, audio and video processing will find something of value in this book, from students to researchers and those in industry.
The perception-action cycle is the circular flow of information that takes place between the organism and its environment in the course of a sensory-guided sequence of behaviour towards a goal. Each action causes changes in the environment that are analyzed bottom-up through the perceptual hierarchy and lead to the processing of further action, top-down through the executive hierarchy, toward motor effectors. These actions cause new changes that are analyzed and lead to new action, and so the cycle continues. The Perception-action cycle: Models, architectures and hardware book provides focused and easily accessible reviews of various aspects of the perception-action cycle. It is an unparalleled resource of information that will be an invaluable companion to anyone in constructing and developing models, algorithms and hardware implementations of autonomous machines empowered with cognitive capabilities. The book is divided into three main parts. In the first part, leading computational neuroscientists present brain-inspired models of perception, attention, cognitive control, decision making, conflict resolution and monitoring, knowledge representation and reasoning, learning and memory, planning and action, and consciousness grounded on experimental data. In the second part, architectures, algorithms, and systems with cognitive capabilities and minimal guidance from the brain, are discussed. These architectures, algorithms, and systems are inspired from the areas of cognitive science, computer vision, robotics, information theory, machine learning, computer agents and artificial intelligence. In the third part, the analysis, design and implementation of hardware systems with robust cognitive abilities from the areas of mechatronics, sensing technology, sensor fusion, smart sensor networks, control rules, controllability, stability, model/knowledge representation, and reasoning are discussed.
This important volume provides a source of information on the key issues, including constraints and capacity building, necessary to implement participatory approaches in China today. A wealth of case studies are provided by principal Chinese academics and practitioners in forestry, natural resource management, rural development, irrigation and poverty alleviation. At the core, the book is about strengthening local government as a key player in the development of participatory initiatives. It is an invaluable text for development practitioners, donors, researchers and students seeking to understand the opportunities and constraints for participation in China, and for those working to institutionalize participatory processes in a complex rural context.
This both accessible and exhaustive book will help to improve modeling of attention and to inspire innovations in industry. It introduces the study of attention and focuses on attention modeling, addressing such themes as saliency models, signal detection and different types of signals, as well as real-life applications. The book is truly multi-disciplinary, collating work from psychology, neuroscience, engineering and computer science, amongst other disciplines. What is attention? We all pay attention every single moment of our lives. Attention is how the brain selects and prioritizes information. The study of attention has become incredibly complex and divided: this timely volume assists the reader by drawing together work on the computational aspects of attention from across the disciplines. Those working in the field as engineers will benefit from this book's introduction to the psychological and biological approaches to attention, and neuroscientists can learn about engineering work on attention. The work features practical reviews and chapters that are quick and easy to read, as well as chapters which present deeper, more complex knowledge. Everyone whose work relates to human perception, to image, audio and video processing will find something of value in this book, from students to researchers and those in industry.
This book details a model of consciousness supported by scientific experimental data from the human brain. It presents how the Corollary Discharge of Attention Movement (CODAM) neural network model allows for a scientific understanding of consciousness as well as provides a solution to the Mind-Body problem. The book provides readers with a general approach to consciousness that is powerful enough to lead to the inner self and its ramifications for the vast range of human experiences. It also offers an approach to the evolution of human consciousness and features chapters on mental disease (especially schizophrenia) and on meditative states (including drug-induced states of mind). Solving the Mind-Body Problem bridges the gap that exists between philosophers of mind and the neuroscience community, allowing the enormous weight of theorizing on the nature of mind to be brought to earth and put under the probing gaze of the scientific facts of life and mind.
The perception-action cycle is the circular flow of information that takes place between the organism and its environment in the course of a sensory-guided sequence of behaviour towards a goal. Each action causes changes in the environment that are analyzed bottom-up through the perceptual hierarchy and lead to the processing of further action, top-down through the executive hierarchy, toward motor effectors. These actions cause new changes that are analyzed and lead to new action, and so the cycle continues. The Perception-action cycle: Models, architectures and hardware book provides focused and easily accessible reviews of various aspects of the perception-action cycle. It is an unparalleled resource of information that will be an invaluable companion to anyone in constructing and developing models, algorithms and hardware implementations of autonomous machines empowered with cognitive capabilities. The book is divided into three main parts. In the first part, leading computational neuroscientists present brain-inspired models of perception, attention, cognitive control, decision making, conflict resolution and monitoring, knowledge representation and reasoning, learning and memory, planning and action, and consciousness grounded on experimental data. In the second part, architectures, algorithms, and systems with cognitive capabilities and minimal guidance from the brain, are discussed. These architectures, algorithms, and systems are inspired from the areas of cognitive science, computer vision, robotics, information theory, machine learning, computer agents and artificial intelligence. In the third part, the analysis, design and implementation of hardware systems with robust cognitive abilities from the areas of mechatronics, sensing technology, sensor fusion, smart sensor networks, control rules, controllability, stability, model/knowledge representation, and reasoning are discussed.
There is a sense among scientists that the time is finally ripe for the problem of consciousness to be solved once and for all. The development of new experimental and theoretical tools for probing the brain has produced an atmosphere of unparalleled optimism that the job can now be done properly: The race for consciousness is on In this book, John Taylor describes the complete scene of entries, riders, gamblers, and racecourses. He presents his own entry into the race, which he has been working on for the past twenty-five years -- the relational theory of consciousness, according to which consciousness is created through the relations between brain states, especially those involving memories of personal experiences. Because it is an ongoing and adaptive process, consciousness emerges from past brain activity. It is this highly subtle and delicate process of emergence that leads to the complexity of consciousness. Taylor does not just present another theory of consciousness, but makes comprehensible the nuts-and-bolts methodology behind the myriad attempts to win the race.
This important volume provides a source of information on the key issues, including constraints and capacity building, necessary to implement participatory approaches in China today. A wealth of case studies are provided by principal Chinese academics and practitioners in forestry, natural resource management, rural development, irrigation and poverty alleviation. At the core, the book is about strengthening local government as a key player in the development of participatory initiatives. It is an invaluable text for development practitioners, donors, researchers and students seeking to understand the opportunities and constraints for participation in China, and for those working to institutionalize participatory processes in a complex rural context.
|
You may like...
Wits University At 100 - From Excavation…
Wits Communications
Paperback
|