0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Physical Layer Multi-Core Prototyping - A Dataflow-Based Approach for LTE eNodeB (Hardcover, 2013 ed.): Maxime Pelcat,... Physical Layer Multi-Core Prototyping - A Dataflow-Based Approach for LTE eNodeB (Hardcover, 2013 ed.)
Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, Jean-Francois Nezan
R2,663 Discovery Miles 26 630 Ships in 18 - 22 working days

Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task.

"Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach" provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in systems based on heterogeneous multi-core Digital Signal Processors. Multi-core prototyping methods based on algorithm dataflow modeling and architecture system-level modeling are assessed with the goal of automating and optimizing algorithm porting.

With its analysis of physical layer processing and proposals of parallel programming methods, which include automatic partitioning and scheduling, "Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach" is a key resource for researchers and students. This study of LTE algorithms which require dynamic or static assignment and dynamic or static scheduling, allows readers to reassess and expand their knowledge of this vital component of LTE base station design.

"

Physical Layer Multi-Core Prototyping - A Dataflow-Based Approach for LTE eNodeB (Paperback, 2013 ed.): Maxime Pelcat,... Physical Layer Multi-Core Prototyping - A Dataflow-Based Approach for LTE eNodeB (Paperback, 2013 ed.)
Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, Jean-Francois Nezan
R3,208 Discovery Miles 32 080 Ships in 18 - 22 working days

Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task. Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in systems based on heterogeneous multi-core Digital Signal Processors. Multi-core prototyping methods based on algorithm dataflow modeling and architecture system-level modeling are assessed with the goal of automating and optimizing algorithm porting. With its analysis of physical layer processing and proposals of parallel programming methods, which include automatic partitioning and scheduling, Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach is a key resource for researchers and students. This study of LTE algorithms which require dynamic or static assignment and dynamic or static scheduling, allows readers to reassess and expand their knowledge of this vital component of LTE base station design.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Culture of the Grape-Vine, and the…
George Suttor Paperback R462 Discovery Miles 4 620
The Classic USDA Farmers' Bulletin…
U.S. Department of Agriculture Hardcover R757 Discovery Miles 7 570
Leeks
Michelle Hawkins Paperback R243 Discovery Miles 2 430
Aero and Vibroacoustics of Automotive…
Hung Nguyen-Schafer Hardcover R3,214 Discovery Miles 32 140
Computer Techniques and Algorithms in…
Cornelius T. Leondes Hardcover R3,233 Discovery Miles 32 330
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, … Paperback R2,203 Discovery Miles 22 030
Mechatronics in Action - Case Studies in…
David Bradley, David W. Russell Hardcover R2,678 Discovery Miles 26 780
Vegetable Gardening Journal - A Weekly…
Kari Spencer Paperback R361 Discovery Miles 3 610
Active Flow Control II - Papers…
Rudibert King Hardcover R5,211 Discovery Miles 52 110
Mechatronics and Intelligent Systems for…
Francisco Rovira Mas, Qin Zhang, … Hardcover R4,274 Discovery Miles 42 740

 

Partners